We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanoneedle Bio-patch Provides Minimally Invasive Drug Delivery

By LabMedica International staff writers
Posted on 20 Nov 2018
A flexible bio-patch made from silicon nanoneedles embedded in a thin layer of elastomer was shown to deliver exact doses of biomolecules to cells and tissues while minimizing discomfort to the wearer.

Vertically ordered arrays of silicon nanoneedles – due to their nanoscale dimension and low cytotoxicity – are capable of minimally invasive nanoinjection of biomolecules into living biological systems such as cells and tissues. Nanoneedle bio-patches are usually fabricated on a bulk silicon wafer that is able to withstand the high temperatures and corrosive chemicals employed in standard nanofabrication processes. These rigid, flat, and opaque silicon wafers do not conform favorably with the soft, curvilinear, and optically transparent biological systems for which they are intended.

To improve this situation, investigators at Purdue University (West Lafayette, IN, USA) developed a unique methodology that enabled construction of vertically ordered silicon nanoneedles on a thin layer of elastomer patch that could flexibly and transparently interface with biological systems.

The investigators reported in the November 9, 2018, online edition of the journal Science Advances that this methodology allowed the heterogeneous integration of vertically ordered silicon nanoneedles with a thin layer of elastomer patch, which could provide a certain degree of mechanical flexibility, optical transparency, and cell and tissue compatibility.

"This means that eight or nine silicon nanoneedles can be injected into a single cell without significantly damaging a cell. So we can use these nanoneedles to deliver biomolecules into cells or even tissues with minimal invasiveness," said senior author Dr. Chi Hwan Lee, assistant professor in of biomedical engineering at Purdue University. "This nanoneedle patch is not only flexible but also transparent, and therefore can also allow simultaneous real-time observation of the interaction between cells and nanoneedles."

Related Links:
Purdue University


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.