We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Preventing Accumulation of Senescent Cells Reverses Adverse Signs of Aging

By LabMedica International staff writers
Posted on 15 Jan 2019
Researchers working with mouse models have shown that some of the less desirable signs of aging, such as chronic inflammation and reduced function of some organs, could be reversed by treatment to reduce the number of senescent cells that have accumulated in the animal.

Senescent cells are aged or damaged cells that accumulate in tissues in advanced age. They no longer are able to perform their normal roles and interfere with the functioning of the tissue in which they accumulate. Elimination of senescent cells is considered to be a promising therapeutic approach.

The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. To evaluate the role of the immune system in the aging process, investigators at the Weizmann Institute of Science (Rehovot, Israel) worked with Prf1−/− mice with impaired cell cytotoxicity, which suffered from chronic inflammation, and with progeroid (progeroid means "resembling premature aging") mice with impaired cell cytotoxicity that promoted senescent-cell accumulation and shortened lifespan.

The investigators reported in the December 21, 2018, online edition of the journal Nature Communications that Prf1−/− mice with impaired cell cytotoxicity exhibited both higher senescent cell tissue burden and chronic inflammation. They suffered from multiple age-related disorders and lower survival. The accumulation of senescent cells in these Prf1−/− mice was accompanied by a progressive state of chronic inflammation, followed by increased tissue fibrosis and other types of tissue damage, as well as compromised organ functionality. The poor health of old Prf1−/− mice was associated with fitness reduction, weight loss, kyphosis (abnormally excessive convex curvature of the spine), older appearance, and shorter lifespan than that of wild type controls.

The investigators reported that elimination of senescent cells from old Prf1−/− mice could be achieved by pharmacological inhibitors of the BCL-2 family of proteins, such as ABT-737. First developed for potential cancer chemotherapy, ABT-737 was subsequently identified as a senolytic (a drug that selectively induces cell death in senescent cells). This pharmacological approach attenuated age-related phenotypes and gene expression profile in Prf1−/− mice. Furthermore, implementation of this approach on Prf1−/− progeroid mice increased median lifespan of these animals.

These findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.

Related Links:
Weizmann Institute of Science


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.