We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Study Reveals Varying Antibody Responses and Adverse Reactions Among Recipients of Different COVID-19 Vaccines

By LabMedica International staff writers
Posted on 29 Sep 2021
Print article
Illustration
Illustration

A new study revealing how antibodies against the SARS-CoV-2 virus can vary among recipients of different COVID-19 vaccines was presented at the 2021 AACC Annual Scientific Meeting & Clinical Lab Expo.

The study by researchers at the Dartmouth-Hitchcock Medical Center (Lebanon, NH, USA) shows how antibody responses and adverse reactions can differ in recipients of the Moderna and Pfizer COVID-19 vaccines.

Vaccines have become essential tools in the fight against COVID-19, but it’s still unclear exactly how the antibodies generated from different vaccines change or wane over time. Meanwhile, the spread of the Delta variant and the rising number of breakthrough infections have both highlighted the importance of characterizing antibodies against SARS-CoV-2 in both vaccinated and unvaccinated individuals. Knowing more about antibody patterns could also help clinicians assess individuals’ immunity to SARS-CoV-2, in addition to helping with the diagnosis and management of patients.

In the new study, the researchers collected blood samples of 78 individuals who received the Moderna vaccine and 70 individuals who received the Pfizer vaccine, before the second vaccine dose, 14 days after the second dose, and 30 days after. The study participants also took a survey where they rated the severity of adverse effects and symptoms after vaccination. Overall, individuals who received the Moderna vaccine showed a higher antibody response against the viral spike protein compared with those who received the Pfizer vaccine (4,244 U/mL vs. 1,986 U/mL 30 days after dose two) and also reported stronger side effects. However, the researchers have cautioned that these differences could arise from confounding variables such as the higher mRNA dosage in the Moderna vaccine. The team also found that antibody responses had dropped 30 days after the second dose, regardless of the vaccine given.

“We can’t claim Moderna is better than Pfizer based on these results … but it does seem there is more of a response from Moderna at least in terms of the assay that we used,” said Michael Kelliher, PhD, of Dartmouth-Hitchcock Medical Center, who led the research. “How that correlates with the total adaptive immune response is unknown, and there’s still a decent amount of research that needs to be done on this topic.”

Related Links:
Dartmouth-Hitchcock Medical Center

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Chikungunya Rapid Test
Chikungunya IgG/IgM Rapid Test Kit
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Print article
ADLM

Channels

Molecular Diagnostics

view channel
Image: The groundbreaking genomics method has the potential to uncover insights previously missed (Photo courtesy of Breakthrough Genomics)

Groundbreaking Blood Test Detects Earliest Signs of Pancreatic Cancer Before Symptoms Appear

Pancreatic cancer often remains undetected until it has progressed beyond the pancreas, typically because it presents no noticeable symptoms in its early stages. Consequently, pancreatic cancer has one... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.