We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Real-Time Imaging Methods Captures Cell Movements in Breast Cancer

By LabMedica International staff writers
Posted on 07 Oct 2008
Print article
A new innovation in cellular imaging is allowing scientists to better understand the movement of cells in the area around tumors, also known as the tumor microenvironment.

In a recent article published in the September/October 2008 issue of the journal Disease Models & Mechanisms (DMM), Dr. Zena Werb, from the University of California, San Francisco (USA), and colleagues from various other institutions used optimized methods of laser microscopy to track the movement of live cells in a mouse model of breast cancer.

As a tumor grows, it triggers immune responses in the body, and recruits help from healthy cells in order to "feed” and support the spread of the cancerous growth. The influence of the tumor on neighboring cells is dependent on the microenvironment surrounding the tumor. Various immune cells and structural proteins defend the body against the tumor, while others help the tumor grow and spread.

To watch the activity of these cells, researchers injected fluorescent dyes near tumors in mouse models of breast cancer, which also expressed fluorescently tagged cells. A specially designed microscope allowed live imaging of tumor-associated cells for more than 12 hours, while retaining the high resolution necessary to visualize individual cells move in real time. The investigators noticed that subsets of immune cells move differently--some migrate along blood vessels, whereas others remain at the border of the tumor. Furthermore, alterations in the tumor microenvironment, such as a reduction of oxygen, caused some immune cells to stop migrating.

This study, according to the investigators, provides clues into how specific immune cells help or inhibit tumor growth. This then helps in identifying drug targets that can be inhibited to prevent the spread of cancer, or conversely, targets that can be stimulated to enhance the body's natural immune response to cancer. Moreover, this new imaging technique has potential beyond studying cancer, such as watching cell movement in other tissues and organs, both diseased and healthy.

Related Links:
University of California, San Francisco


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.