We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Photonic Crystal Biosensors Detect Protein-DNA Interactions

By LabMedica International staff writers
Posted on 15 Oct 2008
Print article
Scientists have developed a new class of disposable, microplate-based optical biosensors capable of detecting protein-DNA interactions. Based on the characteristics of photonic crystals, the biosensors are suitable for the rapid identification of inhibitors of protein-nucleic acid and protein-protein interactions.

"Protein-DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair, and apoptosis,” said Dr. Paul Hergenrother, a professor of chemistry and an affiliate of the University of Illinois Institute for Genomic Biology (U of I; Urbana-Champaign; IL, USA). "Screening for compounds that inhibit particular kinds of protein-DNA binding is a very important step in drug development.”

Developed by Dr. Brian Cunningham, a U of I professor of electrical and computer engineering, the photonic crystal biosensors consist of a low-refractive-index polymer grating coated with a film of high-refractive-index titanium oxide, attached to the bottom of a standard 384-well microplate. Each well functions as a tiny test tube with a biosensor in the bottom.

"First, we selectively attach a biomolecule, such as DNA, to the bottom of each well. Then we see how that biomolecule interacts with other molecules, including drugs,” said Dr. Cunningham. By examining the light reflected from the photonic crystal, the researchers can determine when molecules are added to, or removed from, the crystal surface. The measurement technique can be used, for example, in a high-throughput screening mode to rapidly identify molecules and compounds that prevent DNA-protein binding.

The researchers demonstrated the new technology by examining two very different protein-DNA interactions. The first was the bacterial toxin-antitoxin system MazEF, which binds to DNA in a sequence-specific manner and is believed to be responsible for the maintenance of resistance-encoding plasmids in certain infectious bacteria. The second was the human apoptosis-inducing factor (AIF), a protein that binds to chromosomal DNA in a DNA-sequence-independent manner.

The photonic crystal biosensor technology was additionally utilized in a screen for inhibitors of the AIF-DNA interaction, and through this screen, aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF. "Aurin tricarboxylic acid displayed about 80% inhibition of AIF-DNA binding,” Dr. Hergenrother said. "Aurin tricarboxylic acid was the only compound to exhibit significant inhibition out of approximately 1,000 compounds screened.”

While the photonic crystal biosensor was demonstrated only for protein-DNA interactions, equivalent studies with protein-RNA interactions and protein-protein interactions are also possible, according to Dr. Cunningham. "We also could grow cancer cells on the photonic crystal surface, and see how different drugs affect cell growth.”

The researchers described their research in the July 18, 2008, issue of the journal ACS Chemical Biology.

Related Links:
University of Illinois Institute for Genomic Biology


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.