We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Systems Biology Used To Study Cellular Glycomics in White Blood Cells

By LabMedica International staff writers
Posted on 12 Nov 2008
Print article
Two recent papers have presented the results of attempts to use a systems biology approach to understand the cellular glycome. The glycome represents a cell's total sugar or carbohydrate composition. It has been described as exceeding the complexity of the proteome because of the even greater diversity of the glycome's constituent carbohydrates, and is further complicated by the sheer multiplicity of possibilities in the combination and interaction of the carbohydrates with each other and with proteins.

Systems biology is a mathematical and experimental approach that focuses on whole systems of complex biological functions and interactions instead of studying individual units, such as a single gene or protein, in isolation. Investigators at the University at Buffalo (NY, USA) used this approach to examine the relationship between gene expression, glycosyltransferase activity, glycan expression, and selectin-binding function in different cell systems, including human neutrophils, undifferentiated HL-60 (human promyelocytic cells), differentiated HL-60, and HL-60 synchronized in specific growth phases. Selectins are a large family of membrane proteins that bind oligosaccharides on other cells tightly and specifically, and are involved in signal transduction across the plasma membrane.

Their results were published in two papers. The first article, which appeared in the August 26, 2008, online edition of The FASEB Journal, described the experimental techniques used to measure enzyme reaction rates involved in glycosylation, and then drew critical correlations with gene expression, enzyme kinetics, and the structures of glycans. The second paper, which was published in the October 7, 2008, online edition of the journal Bioinformatics, described a computer model that utilized the data produced by those experiments to establish a basis for predicting the structures of glycans on cell surfaces.

"Our goal is to find ways to alter carbohydrate structures or glycans on the surfaces of white blood cells,” explained senior author Dr. Sriram Neelamegham, professor of chemical and biological engineering at the University of Buffalo. "Systems biology is well suited to this research because it helps us develop the mathematical concepts to enable us to influence and enhance our understanding of how the glycome functions. This then produces clues on how we might manipulate the adhesivity of white blood cells to the blood vessel wall.”

"The data produced experimentally allows us to determine key steps in the glycome reaction network that controls the final glycan structure that appears on cells,” said Dr. Neelamegham. "This approach then provides an in silico tool that can be applied to perturb the system of interest, such as the glycosylation network.”

Related Links:
State University of New York, University at Buffalo

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.