We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Compensating for a Missing Prostate Cancer Tumor Suppressor Gene

By LabMedica International staff writers
Posted on 02 Dec 2008
Print article
Cancer researchers have found that inactivation of the GRP78 gene prevented development of prostate cancer from mutated mouse epithelial tissues that normally would be prime tumor breeding grounds due to the lack of the PTEN tumor suppressor gene.

PTEN is one of the most commonly lost tumor suppressors in human cancer. During tumor development, mutations and deletions of PTEN occur that inactivate its enzymatic activity leading to increased cell proliferation and reduced cell death. Frequent genetic inactivation of PTEN occurs in glioblastoma, endometrial cancer, prostate cancer, and reduced expression is found in many other tumor types such as lung and breast cancer.

Previous studies had shown that the glucose-regulated protein GRP78 was a crucial entity in the development of prostate cancer by promoting cancer cell proliferation, mediating oncogenic signaling, and protecting cancer cells against cell death resulting from the stress of tumor development. These findings prompted investigators at the University of Southern California (Los Angeles, CA, USA) to genetically engineer a line of mice that lacked both the GRP78 and PTEN genes.

They reported in the November 25, 2008, online edition of the Proceedings of the [U.S.] National Academy of Sciences (PNAS) that mouse prostates with double conditional knockout of GRP78 and PTEN exhibited normal histology and cytology, in contrast to the invasive adenocarcinoma in mouse prostates with PTEN inactivation but with active GRP78. The lack of GRP78 prevented activation of the AKT oncogene, which would have been expected due to occur with no PTEN activity to prevent it.

"To our knowledge, this is the first demonstration that inactivation of a specific molecular chaperone from the mouse prostate epithelial cells can potently block prostate cancer development and suppress the activation of AKT, which is a protein kinase that promotes cell proliferation and survival and is a major factor in many types of cancer,” explained senior author Dr. Amy Lee, professor of biochemistry and molecular biology at the University of Southern California. "With the recent advances in identifying agents that suppress GRP78 expression, anti-GRP78 therapy may open up an entirely new approach to stop human cancer.”

Related Links:
University of Southern California

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.