We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultra-Fast Cameras Used To Visualize Molecular Activity

By LabMedica International staff writers
Posted on 23 Dec 2008
Print article
Scientists in Munich and Boston have been working with new three-dimensional (3D) imaging systems that use ultra-fast cameras to capture high resolution images of the molecular activity in laboratory mice engineered to develop lung cancer. With additional evaluation, the scientists reported the same approach could be used to study cancer in people.

The research was led by Dr. Vasilis Ntziachristos, director of the Institute for Biological and Medical Imaging at the Helmholtz Center (Munich, Germany), and Dr. Mark Niedre, assistant professor of electrical and computer engineering at Northeastern University (Boston, MA, USA). The technology involved required a sophisticated use of light. According to Dr. Niedre, they solved the problems associated with traditional infrared-imaging technology, resulting is a clearer image of molecular markers of inflammation and other lung disorders.

The inventory of genes and proteins associated with cancer and other diseases is growing rapidly: early in November 2008, for instance, scientists reported sequencing the whole genome of a cancer cell for the first time. Molecular imaging technology puts this data in context by allowing scientists to see biologic molecules in action inside diseased cells and tissues. Now, researchers have devised a molecular imaging technique that uses near-infrared light peer deeper into the body.

Fluorescent-protein tags can be generated to target nearly any biologic protein, be it an enzyme that helps cancer cells advance through surrounding tissue or a marker of arthritic inflammation. However, their use has been limited to shallow tissues in humans or to small animals. The markers are triggered by, and emit near-infrared or infrared light, which scatters in the tissue; the more tissue the light has to penetrate, the blurrier the images become. A new 3D near-infrared imaging system utilizes ultra-fast cameras to capture light that has not scattered. The technology been used to create clearer, higher-resolution images of the molecular workings of lung cancer in mice, and with further development, it might be used to study disease in thicker tissues and in humans.

This progress, according to the scientists, should quickly provide researchers with an inside look at how cancer metastasizes inside an animal. The scientists are now trying to determine the precise molecular mechanism that occurs as cancer spreads from one tumor site to another.

Related Links:
Helmholtz Center
Northeastern University

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.