We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gold Nanoparticles Allow Controlled Release of Multiple Cancer Agents

By LabMedica International staff writers
Posted on 28 Jan 2009
Print article
Utilizing tiny gold particles and infrared light, researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion. Such a system could one day be used to provide more control when fighting diseases typically treated with more than one drug, according to the researchers.

"With a lot of diseases, especially cancer and AIDS, you get a synergistic effect with more than one drug,” said Dr. Kimberly Hamad-Schifferli, assistant professor of biological and mechanical engineering at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) and senior author of the study's findings that appeared in the December 16, 2008, issue of the journal American Chemical Society's (ACS) journal ACS Nano.

Delivery devices already exist that can release two drugs, but the timing of the release must be built into the device--it cannot be controlled from outside the body. The new system is controlled externally, and hypothetically, it could deliver up to three or four drugs. The technique takes advantage of the fact that when gold nanoparticles are exposed to infrared light, they melt and release drug payloads attached to their surfaces.

Nanoparticles of different shapes respond to different infrared wavelengths, so "just by controlling the infrared wavelength, we can choose the release time” for each drug, stated Andy Wijaya, graduate student in chemical engineering and lead author of the study.

The team constructed two different shapes of nanoparticles, which they call "nanobones” and "nanocapsules.” Nanobones melt at light wavelengths of 1,100 nm, and nanocapsules at 800 nm. In the study, the researchers tested the particles with a payload of DNA. Each nanoparticle can carry hundreds of strands of DNA, which could also be engineered to transport other types of drugs. In theory, up to four different-shaped particles could be developed, each releasing its cargo at different wavelengths.

Related Links:
Massachusetts Institute of Technology

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.