We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Combinatorial Drugs Target Cancer Cell Mitochondria

By LabMedica International staff writers
Posted on 05 Mar 2009
Print article
Cancer researchers have used a process of "combinatorial” drug design to create a class of small molecule compounds that kill cancer cells by entering and destroying their mitochondria. In this case, the term describes a molecule that is directed at a specific protein, Hsp90, with the combined specificity for the mitochondria of cancer cells.

Investigators from the University of Massachusetts Medical School (Worcester, USA) named their new class of drugs Gamitrinibs. The structure of a Gamitrinib is combinatorial and contains a benzoquinone ansamycin backbone derived from the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a linker region on the C17 position, and a mitochondrial targeting moiety, either provided by one to four tandem repeats of cyclic guanidinium (Gamitrinib-G1–G4) or triphenylphosphonium (Gamitrinib–TPP-OH). By molecular dynamics simulation, the 17-AAG portion of Gamitrinib is predicted to make contacts with the Hsp90 ATPase pocket, whereas the "mitochondriotropic” guanidinium module is excluded from the binding interface, pointing outside of the ATP (adenotriphosphate)ase pocket toward the solvent. Hsp90 is a chaperone protein that controls the folding of proteins in multiple signaling networks that drive tumor development and progression.

Results published in the February 23, 2009, issue of the Journal of Clinical Investigation (JCI) revealed that Gamitrinibs accumulated in the mitochondria of human tumor cell lines where they inhibited Hsp90 activity by acting as ATPase antagonists. Unlike Hsp90 antagonists not targeted to mitochondria, Gamitrinibs exhibited a "mitochondriotoxic” mechanism of action, causing rapid tumor cell death and inhibiting the growth of xenografted human tumor cell lines in mice. Importantly, Gamitrinibs were not toxic to normal cells or tissues and did not affect Hsp90 homeostasis in cellular compartments other than mitochondria.

The combinatorial technique allowed the development of molecules that targeted a protein that controls multiple signaling pathways. Furthermore, the drugs were directed towards one specific cellular compartment in which Hsp90 is active in tumor cells' mitochondria. Treatment with these drugs effectively induced tumor cell death in mice transplanted with human tumor cell lines. Thus, the researchers concluded that, "combinatorial drug design, whereby inhibitors of signaling networks are targeted to specific cellular compartments, may prove a more effective strategy for developing anticancer drugs than targeting single signaling pathways.”

Related Links:

University of Massachusetts Medical School



Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Flow Cytometer
BF – 710
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.