We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Combinatorial Drugs Target Cancer Cell Mitochondria

By LabMedica International staff writers
Posted on 05 Mar 2009
Print article
Cancer researchers have used a process of "combinatorial” drug design to create a class of small molecule compounds that kill cancer cells by entering and destroying their mitochondria. In this case, the term describes a molecule that is directed at a specific protein, Hsp90, with the combined specificity for the mitochondria of cancer cells.

Investigators from the University of Massachusetts Medical School (Worcester, USA) named their new class of drugs Gamitrinibs. The structure of a Gamitrinib is combinatorial and contains a benzoquinone ansamycin backbone derived from the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a linker region on the C17 position, and a mitochondrial targeting moiety, either provided by one to four tandem repeats of cyclic guanidinium (Gamitrinib-G1–G4) or triphenylphosphonium (Gamitrinib–TPP-OH). By molecular dynamics simulation, the 17-AAG portion of Gamitrinib is predicted to make contacts with the Hsp90 ATPase pocket, whereas the "mitochondriotropic” guanidinium module is excluded from the binding interface, pointing outside of the ATP (adenotriphosphate)ase pocket toward the solvent. Hsp90 is a chaperone protein that controls the folding of proteins in multiple signaling networks that drive tumor development and progression.

Results published in the February 23, 2009, issue of the Journal of Clinical Investigation (JCI) revealed that Gamitrinibs accumulated in the mitochondria of human tumor cell lines where they inhibited Hsp90 activity by acting as ATPase antagonists. Unlike Hsp90 antagonists not targeted to mitochondria, Gamitrinibs exhibited a "mitochondriotoxic” mechanism of action, causing rapid tumor cell death and inhibiting the growth of xenografted human tumor cell lines in mice. Importantly, Gamitrinibs were not toxic to normal cells or tissues and did not affect Hsp90 homeostasis in cellular compartments other than mitochondria.

The combinatorial technique allowed the development of molecules that targeted a protein that controls multiple signaling pathways. Furthermore, the drugs were directed towards one specific cellular compartment in which Hsp90 is active in tumor cells' mitochondria. Treatment with these drugs effectively induced tumor cell death in mice transplanted with human tumor cell lines. Thus, the researchers concluded that, "combinatorial drug design, whereby inhibitors of signaling networks are targeted to specific cellular compartments, may prove a more effective strategy for developing anticancer drugs than targeting single signaling pathways.”

Related Links:

University of Massachusetts Medical School



New
Gold Member
Chagas Disease Test
CHAGAS Cassette
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Celiac Disease Test
AESKULISA tTg-A New Generation
New
Ureaplasma Urealyticum Test
Duplicα RealTime Ureaplasma Urealyticum Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.