We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




X-Ray Techniques Probe the Clostridium Difficile Surface Layer

By LabMedica International staff writers
Posted on 11 Mar 2009
Print article
A team of molecular microbiologists has begun to shed light on the structural mechanism used by the pathogenic bacterium Clostridium difficile to adhere to and infect human enteric tissue.

Investigators at Imperial College (London, United Kingdom) used X-ray crystallography techniques to produce both high- and low-resolution images of the C. difficile surface layer (S-layer). The S-layer contains a high-molecular-weight S-layer protein (HMW SLP) and its low-molecular-weight partner protein (LMW SLP).

Results published in the March 1, 2009, issue of the journal Molecular Microbiology revealed that the two types of protein formed a tightly associated noncovalent complex, the H/L complex. The 2.4-angstrom X-ray crystal structure of a shortened derivative of the LMW SLP revealed two domains. Domain 1 had a two-layer sandwich architecture while domain 2, predicted to orientate towards the external environment, contained a novel fold.

Small-angle X-ray scattering analysis of the H/L complex showed an elongated molecule, with the two SLPs arranged "end-to-end" interacting with each other through a small contact area. The way the LMW SLPs - which showed high sequence diversity - were aligned revealed a core of conserved residues. This type of structure could reflect functional conservation, while allowing for immune evasion through the sequence variation.

Dr. Neil Fairweather, professor of cell and molecular biology at Imperial College said, "This is the first time anyone has gained detailed information about the molecular structure of [the] C. difficile protective 'jacket,' because analyzing the two protein components is painstakingly difficult work. We are confident that continuing this work to better understand the formation of this protective coat and its exact function will reveal new targets for effective drugs to beat this dangerous pathogen, and could even lead to an effective vaccine."

Related Links:
Imperial College


New
Gold Member
Chagas Disease Test
CHAGAS Cassette
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
DVT/PE Test
VIDAS D-DIMER EXCLUSION II
New
Automated Immunoassay Analyzer
Phadia 1000

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.