We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Generation of Antibiotics Disrupts Quorum Sensing

By LabMedica International staff writers
Posted on 24 Mar 2009
Print article
Image: Colored scanning electron micrograph (SEM) of Escherichia coli bacteria (Photo courtesy of Steve Gschmeissner / SPL).
Image: Colored scanning electron micrograph (SEM) of Escherichia coli bacteria (Photo courtesy of Steve Gschmeissner / SPL).
Drug developers are working on a new generation of antibiotics that do not kill bacteria but instead disrupt the communication system known as "quorum sensing,” which induces the microorganisms to manufacture disease-causing toxins.

Several types of bacteria, including such human pathogens as Vibrio cholerae and Escherichia coli O157:H7, can grow within a host without harming it, until they reach a certain concentration. They become aggressive when their numbers become sufficient to overcome the host's immune system and form a biofilm, leading to disease. The language of quorum sensing is based on the bacterial population producing and detecting signaling molecules known as autoinducers.

Investigators from the Albert Einstein College of Medicine (New York, NY, USA) focused on the bacterial enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN), which is involved in S-adenosylmethionine–related quorum sensing pathways that induce bacterial pathogenesis factors. To block MTAN activity they created a series of transition state analogs, MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A, and BuT-DADMe-Immucillin-A, which are slow-onset, tight-binding inhibitors of V. cholerae MTAN (VcMTAN).

Results published in the March 8, 2009, online edition of the journal Nature Chemical Biology revealed that in V. cholerae cells, the compounds were potent MTAN inhibitors. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. The compounds disrupted autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic E. coli O157:H7.

By targeting quorum sensing rather than bacterial growth, the new drugs avoided stimulating the bacteria into becoming resistant. The investigators tested the compounds on 26 successive generations of both bacterial species, and found that the 26th generations were as sensitive to the antibiotics as the first. "In our lab, we call these agents everlasting antibiotics,” said senior author Dr. Vern Schramm, professor of biochemistry at Albert Einstein College of Medicine.

Related Links:

Albert Einstein College of Medicine


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.