We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electromagnetic Technique to Lower Cost of Genome Mapping

By LabMedica International staff writers
Posted on 28 Apr 2009
Print article
Researchers have developed a method for the simultaneous sequencing of many DNA chains, an improvement in methodology designed to drastically lower the cost of genome mapping.

Mapping of individual human genomes is hampered by techniques incapable of coping with the more than three billion base pairs that have to be sequenced. To solve this problem and to reduce the cost per patient to $1,000 or less (as requested by the [U.S.] National Institutes for Health), investigators at Brown University (Providence, RI, USA) combined the standard method of electrophoresis, voltage-driven DNA translocation through nanopores, with a novel application of magnetic field technology. The main drawback of the electrophoresis technique has been the high speed at which the DNA molecules move through the site of base pair sequencing, which leads to inaccurate determinations.

The first step in the new technique was to attach DNA strands to 2.8-micron diameter beads using the well-known avidin-biotin binding method. The strands were then placed in an electric field that induced them to move through a gel with nanopores only 10 nm in diameter. While the DNA strands could pass through the pores, the beads could not. Next, a magnetic field was applied in the direction opposite to the electric field, and the strands were slowly pulled back out of the pores. At this time the base pair sequences could be easily and clearly identified. Many individual DNA strands could be handled at the same time.

Senior author Dr. Xinsheng Sean Ling, professor of physics at Brown University said that the investigators called their process "reverse DNA translocation" because, "The DNA is essentially caught in a tug-of-war. And the speed of translocation will be controlled not solely by the electric field but by striking some balance between the magnetic and the electric fields. From there, we can tune it to dictate the speed."

"When it comes to sequencing anyone's genome, you need to do it cheaply, and you need to do it quickly," explained Dr. Ling. "This is a step in that direction."

Related Links:
Brown University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control
New
Progesterone Serum Assay
Progesterone ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.