We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Drug Developers Identify Novel Target for Treatment of Autoimmune Disease

By LabMedica International staff writers
Posted on 05 May 2009
Print article
A recent study identified the target molecule for quinoline-3-carboxamides (Q compounds), a class that developers of drugs for treatment of autoimmune and inflammatory diseases have been working with for more than 25 years.

Q compounds have proven effective in clinical trials for the treatment of multiple sclerosis (MS) and type I diabetes. Furthermore, they are currently in phase III clinical development for the treatment of MS and are about to enter phase II for the treatment of systemic lupus erythematosus (SLE). However, despite intensive research efforts, the target molecule and the mode of action of this class of compounds have remained unknown for over 25 years.

Q compounds are unique in that they have a potent effect on disease development in several animal models of autoimmune or inflammatory disease without inducing suppression of adaptive immunity. In the current study, investigators from Lund University (Sweden), the University of Muenster (Germany), and the company Active Biotech AB (Lund, Sweden) successfully identified a molecular target for quinoline compounds.

The investigators reported in the April 28, 2009, online edition of the journal PLoS Biology that the target was a protein called S100A9. This protein belongs to the family of calcium-binding S100 proteins and has been extensively studied. It is expressed in granulocytes and at early stages of monocyte differentiation. S100A9 has also been detected on the cell surface of mouse macrophages at sites of inflammation, but the role of surface-bound S100A9 in immunity and inflammation is still unclear.

In the current study, the investigators revealed that S100A9 interacted with two known proinflammatory receptors (Toll-like receptor 4 [TLR4] and receptor of advanced glycation end products [RAGE]), and that this interaction was inhibited by quinoline compounds.

These findings allowed the authors to conclude that, " S100A9 appears to be a focal molecule in the control of autoimmune disease via its interactions with proinflammatory mediators. The specific binding of quinoline-3-carboxamides to S100A9 explains the immunomodulatory activity of this class of compounds and defines S100A9 as a novel target for treatment of human autoimmune diseases."

Active Biotech AB currently has three experimental quinoline drugs (laquinimod, 57-57, and TASQ) under active investigation.

Related Links:

Lund University
University of Muenster
Active Biotech


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.