We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Keys to Cell Movement Found in a Chemical Library

By LabMedica International staff writers
Posted on 21 Aug 2009
Print article
Delving through a biotechnology company's chemical library, American university researchers discovered two molecules that should allow scientists to better examine how cells move.

The study, published online August 2, 2009, in the journal Nature, described how Yale University (New Haven, CT, USA) researchers looked at how two small molecules discovered by Cytokinetics, Inc. (South San Francisco, CA, USA) block the action of a major complex that directs the assembly of actin filaments, which produce the force to help cells move. The target of these inhibitors is the Arp2/3 complex, a cellular component so important that cells die without it. This dependence has made it challenging to learn precisely which cellular processes depend upon the complex.

Dr. Thomas Pollard, senior author the study and professor of molecular, cellular, and developmental biology, reported that the inhibitors will allow scientists to switch the complex off and on, helping shed light on the mechanism of cell movement. Dr. Pollard noted that cell biologists "desperately need these tools to switch Arp2/3 complex off reversibly without killing the cells.” These inhibitors should help scientists determine how nerve cells grow processes to wire the nervous system, embryonic cells migrate to form organs, and white blood cells find bacteria.

Although the molecules were not useful to Cytokinetics as drug candidates, they are of great scientific interest to biologic researchers who study the movement of cells. Dr. Pollard's team determined the crystal structures showing where both of the molecules settle to block the action of Arp2/3 complex.

Related Links:

Yale University
Cytokinetics


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.