We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocked Membrane Translocators Initiate Cell Death Response

By LabMedica International staff writers
Posted on 04 Sep 2009
Print article
A team of molecular biologists has shown that certain antibiotics that kill bacteria by inhibiting protein transcription also cause the blockage and destruction of translocators, microtubules that transport macromolecules through organelle and cell membranes.

Investigators from Princeton University (NJ, USA) studied the Sec complex of translocators in Escherichia coli. They found that the antibiotics tetracycline and chloramphenicol, which inhibit ribosomal function, generated ribosome-polypeptide particles that became stuck in the translocators and plugged them up. In response, the cell activated the protease FtsH, which digested portions of the translocators and contributed to death of the cells. Increasing the amounts or the stability of the membrane protein YccA, a known inhibitor of FtsH, counteracted this destruction.

The findings from this bacterial system, which were published in the August 7, 2009, issue of the journal Science, may contribute to a better understanding of cancer therapeutics, since YccA is a functional homologue of the protooncogene product Bax inhibitor-1, which may share a similar mechanism of action in regulating apoptosis in mammalian cells.

"If we are to have any hope of outpacing the antibiotic resistance obtained by bacteria, it is paramount that we fully understand the mechanism of action of the antibiotics we currently use,” said first author Johna van Stelten, a graduate researcher in molecular biology at Princeton University. "Unfortunately, this is often very difficult as evidenced by the fact that, 50 years on, we are still learning new things about them. We have determined how YccA works in preventing stress-induced death in bacteria. We hope this new information will shed light on the mechanism of BI-1 in humans.”

Related Links:
Princeton University



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automated Nucleic Acid Extractor
eLab
New
Flow Cytometer
BF – 710

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.