Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




One Step Closer to Creating a Synthetic Life Form by Cloning and Engineering Bacterial Genomes

By LabMedica International staff writers
Posted on 11 Sep 2009
Newly devised techniques allow for the rapid engineering of bacterial chromosomes and the creation of extensively modified bacterial species, and should also play key role in the generation of a synthetic cell.

Researchers from the J. More...
Craig Venter Institute (JCVI; Rockville, MD, USA), a not-for-profit genomic research organization, published results in an article by Carole Lartigue et al describing new methods in which the entire bacterial genome from Mycoplasma mycoides was cloned in a yeast cell by adding yeast centromeric plasmid sequence to the bacterial chromosome and modified it in yeast using yeast genetic systems. This modified bacterial chromosome was then isolated from yeast and transplanted into a related species of bacteria, Mycoplasma capricolum, to create a new type of M. mycoides cell. This is the first time genomes have been transferred between branches of life--from a prokaryote to eukaryote and back to a prokaryote. The research was published August 21, 2009, in Science Express.

Hamilton Smith, M.D., one of the leaders of the JCVI team said, "I believe this work has important implications in better understanding the fundamentals of biology to enable the final stages of our work in creating and booting up a synthetic genome. This is possibly one of the most important new findings in the field of synthetic genomics.”

The research was made possible by earlier breakthroughs at JCVI. In 2007, the team published results from the transplantation of the native M. mycoides genome into the M. capricolum cell, which resulted in the M. capricolum cell being transformed into M. mycoides. This work established the hypothesis that DNA is the software of life and that it is the DNA that dictates the cell phenotype.

In 2008, the same investigators reported on the construction of the first synthetic bacterial genome by assembling DNA fragments made from adenine, cytosine, guanine, and thymine. The final assembly of DNA fragments into the whole genome was performed in yeast by making use of the yeast genetic systems. However, when the team attempted to transplant the synthetic bacterial genome out of yeast into a recipient bacterial cell, all the experiments failed.

The researchers had previously established that no proteins were required for chromosome transplantations, however they reasoned that DNA methylation (a chemical modification of DNA that bacterial cells use to protect their genome from degradation by restriction enzymes, which are the proteins that cut DNA at specific sites) might be required for transplantation. When the chromosome was isolated, direct from the bacterial cells it was likely already methylated and therefore transplantable due to it being protected from the cells restriction enzymes.

In this study, the team of researchers began by cloning the native M. mycoides genome into yeast by adding a yeast centromere to the bacterial genome. This is the first time a native bacterial genome has been grown successfully in yeast. Specific methylase enzymes were isolated from M. mycoides and used to methylate the M. mycoides genome isolated from yeast. When the DNA was methylated the chromosome was able to be effectively transplanted into a wild type species of M. capricolum. However, if the DNA was not first methylated the transplant experiments were not successful. To confirm that the restriction enzymes in the M. capricolum cell were responsible for the destruction of the transplanted genome, the scientists removed the restriction enzyme genes from the M. capricolum genome. When genome transplantations were performed using the restriction enzyme minus recipient cells, all the genome transplantations worked regardless of if the DNA was methylated or not.

"The ability to modify bacterial genomes in yeast is an important advance that extends yeast genetic tools to bacteria. If this is extendable to other bacteria we believe that these methods may be used in general laboratory practice to modify organisms,” said Sanjay Vashee, Ph.D., JCVI researcher and corresponding author on the study.

The team now has a complete cycle of cloning a bacterial genome in yeast, modifying the bacterial genome as though it were a yeast chromosome, and transplanting the genome back into a recipient bacterial cell to create a new bacterial strain. These new methods and knowledge should allow the investigators to now transplant and boot up the synthetic bacterial genome successfully.

The research was funded by the company Synthetic Genomics, Inc. (La Jolla, CA, USA), a company cofounded by Drs. Smith and Venter.

The JCVI is a not-for-profit research institute in Rockville, MD, USA, and La Jolla, CA, USA, focused on the advancement of the science of genomics; the understanding of its implications for society; and communication of those results to the scientific community, the public, and policymakers. Founded by J. Craig Venter, Ph.D., the JCVI is home to approximately 400 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy.

Related Links:

J. Craig Venter Institute




Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.