We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Progress Achieved Towards Developing Nanomedicines for Brain Cancer

By LabMedica International staff writers
Posted on 24 Sep 2009
Print article
In an advance toward better treatments for the most lethal form of brain cancer, scientists have developed the first nanoparticles that seek out and destroy brain cancer cells without injuring neighboring healthy cells.

The study was published in the September 9, 2009, issue of the journal Nano Letters. In the article, Dr. Elena Rozhkova and colleagues from the Center for Nanoscale Materials, Argonne U.S. National Laboratory (Argonne, IL, USA) noted the urgent need for new ways to treat a malignant brain tumor, glioblastoma multiforme (GBM), which often causes death within months of diagnosis. Recent studies show that titanium dioxide nanoparticles, a type of light-sensitive material widely used in sunscreens, cosmetics, and wastewater treatment, can destroy some cancer cells when the chemical is exposed to ultraviolet light. However, scientists have had difficulty getting nanoparticles, each approximately 1/50,000th the width of a human hair, to target and enter cancer cells while avoiding healthy cells.

The scientists' solution involves chemically linked titanium dioxide nanoparticles to an antibody that recognizes and attaches to GMB cells. When they exposed cultured human GMB cells to these so-called "nanobio hybrids," the nanoparticles destroyed up to 80% of the brain cancer cells after five minutes of exposure to focused white light. The results suggest that these nanoparticles could become a promising part of brain cancer therapy, when used during surgery, according to the researchers.

Related Links:

Center for Nanoscale Materials, Argonne U.S. National Laboratory


New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Urine Collection Container
Urine Monovette
New
Chlamydia Test Kit
CHLAMYTOP

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.