We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Model System Allows Study of Cell Cycle Checkpoint Proteins

By LabMedica International staff writers
Posted on 01 Dec 2009
Print article
Cancer researchers have created a mouse model system that allows them to study cell cycle checkpoint proteins in healthy and cancerous mammary gland tissues.

Checkpoint proteins monitor the status of the cell genome and, in response to DNA damage, halt cell cycle progression and promote repair or apoptosis, thereby preventing mutation accumulation and suppressing tumor development. The checkpoint protein Hus1 associates with the proteins Rad9 and Rad1 to form the 9-1-1 complex, which localizes to DNA lesions and promotes DNA damage signaling and repair.

Attempts to genetically engineer mice to lack Hus1 failed, as complete inactivation of Hus1 resulted in embryonic lethality. Therefore, investigators at the Cornell University College of Veterinary Medicine (Ithaca, NY, USA) developed a system for regulated Hus1 inactivation in the mouse mammary gland to examine roles for Hus1 in tissue homeostasis and tumor suppression.

They reported in the Nov. 16, 2009, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS) that Hus1 inactivation in the mammary epithelium resulted in genome damage that induced apoptosis and led to depletion of cells lacking Hus1 from the mammary gland. In cancerous tissue with an inactive form of the tumor-suppressor protein p53, there was a delay in the clearance of cells lacking Hus1 that caused the accumulation of damaged, dying cells in the mammary gland.

"Our work contributes to an important new understanding of cancer cells and their weaknesses," said senior author Dr. Robert Weiss, professor of molecular genetics at the Cornell University College of Veterinary Medicine. "The mutations that allow cancer cells to divide uncontrollably also make the cancer cells more dependent on certain cellular processes. We were able to exploit one such dependency of p53-deficient cells and could efficiently kill these cells by inhibiting Hus1. We have proven the power of inhibiting both pathways in normal tissue. Now we want to extend our knowledge to cancerous tissue and determine if the loss of Hus1 will impact the ability of cancers with p53 mutations to take hold and grow."

Related Links:
Cornell University College of Veterinary Medicine


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Food Allergens Assay Kit
Allerquant 14G A
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.