We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Implantable Vaccine Eliminates Melanoma Tumors in Mouse Model

By LabMedica International staff writers
Posted on 08 Dec 2009
Print article
Cancer researchers have implanted plastic disks impregnated with tumor-specific antigens under the skin of a mouse model to reprogram the animals' immune system to attack tumors.

Investigators at Harvard University (Cambridge, MA, USA) employed highly permeable 8.5-mm disks made of an FDA-approved biodegradable polymer. The disks were impregnated with various combinations of an inflammatory cytokine, immune danger signal, and tumor lysates to control the activation and localization of host dendritic cell populations.

Results published in the November 25, 2009, issue of the journal Science Translational Medicine revealed that vaccination by this method maintained local and systemic cytotoxic T lymphocyte responses for extended periods while inhibiting FoxP3 T cell regulatory activity during antigen clearance, resulting in complete regression of distant and established melanoma tumors.

In human disease, alterations in numbers of regulatory T cells – and in particular those that express Foxp3 – are found in a number of disease states. For example, patients with tumors have a local relative excess of Foxp3 positive T cells which inhibits the body's ability to suppress the formation of cancerous cells. Conversely, patients with an autoimmune disease such as systemic lupus erythematosus (SLE) have a relative dysfunction of Foxp3 positive cells.

Senior author Dr. David J. Mooney, professor of bioengineering at Harvard University, said, "This work shows the power of applying engineering approaches to immunology. By marrying engineering and immunology we have taken a major step toward the design of effective cancer vaccines. This approach is able to simultaneously upregulate the destructive immune response to the tumor while downregulating the arm of the immune system that leads to tolerance. In cancer, this latter arm is typically a limiting feature of immunotherapies, since it can extinguish vaccine activity and afford tumors a degree of protection."

Related Links:
Harvard University


Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.