We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Computational Tool Designed for Cancer Treatment

By LabMedica International staff writers
Posted on 05 Mar 2010
Print article
Many human tumors express indoleamine 2,3-dioxygenase (IDO), an enzyme that mediates an immune-escape in several cancer types. Researchers have recently developed an approach for creating new IDO inhibitors by computer-assisted structure-based drug design.

The study, conducted by scientists from the SIB Swiss Institute of Bioinformatics (Lausanne, Switzerland) and Dr. Benoît J. Van den Eynde's group at the Ludwig Institute for Cancer Research, Ltd. (LICR; New York, NY, USA) Brussels Branch, published their findings in the January 2010 online issue of the Journal of Medicinal Chemistry.

The docking algorithm EADock, used for this project, was developed by the Molecular Modeling Group over the last eight years. It provides solutions for the "lock-and-key” problem, wherein the protein active site is regarded as a "lock,” which can be fitted with a "key” (typically a small organic molecule) able to regulate its activity. Once an interesting molecule has been obtained, synthesis and laboratory experiments are necessary to confirm or reject the prediction. This algorithm will soon be made available to the scientific community worldwide.

The scientists obtained a high success rate. Fifty percent of the molecules designed in silico were active IDO inhibitors in vitro. Compounds that displayed activities in the low micromolar to nanomolar range, made them suitable for additional evaluation in tumor cell experiments and for in vivo evaluation in laboratory mice. If these studies are successful, scientists can begin assessing these new compounds in patients undergoing cancer-immunotherapy.

According to Olivier Michielin, assistant member at the Lausanne Branch of LICR and leader of the SIB Swiss Institute of Bioinformatics Molecular Modeling group, "This is a satisfactory proof of principle showing that computational techniques can produce very effective inhibitors for specific cancer targets with high yield. This is very encouraging for future drug developments in the academic environment.”

Related Links:

SIB Swiss Institute of Bioinformatics
Cancer Research


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Flu Test
ID NOW Influenza A & B 2
New
Leishmania Test
Leishmania Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.