We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Potential Anticancer Drug Acts via Energy Restriction

By LabMedica International staff writers
Posted on 21 Apr 2010
Print article
A recently developed thiazolidinedione derivative has demonstrated potential as an anticancer drug in tests conducted on cultures of breast and prostate cancer cells.

Thiazolidinediones (TZDs) act by binding to PPARs (peroxisome proliferator-activated receptors), a group of receptor molecules inside the cell nucleus, specifically PPAR-gamma. The ligands for these receptors are free fatty acids (FFAs) and eicosanoids. When activated, the receptor migrates to the DNA, activating transcription of a number of specific genes. Following activation of PPAR-gamma, insulin resistance is decreased, adipocyte differentiation is modified, VEGF-induced angiogenesis is inhibited, leptin levels decrease (leading to an increased appetite), levels of certain interleukins (e.g. IL-6) fall, and adiponectin levels rise.

While TZDs have been approved for use in treating type II diabetes, some data has indicated that they possess weak anticancer activity. These compounds destroy cancer cells through dietary caloric restriction in a manner similar to the natural product-based energy restriction-mimetic agents (ERMAs) such as resveratrol and 2-deoxyglucose. In the current study, investigators at Ohio State University (Columbus, USA) sought to increase the anticancer activity of the TZDs, and to this end prepared the compound OSU-CG12, a derivative of the TZD ciglitazone.

They reported in the March 26, 2010, issue of the Journal of Biological Chemistry that when tested on cultures of breast or prostate cancer cells, OSU-CG12 was more than ten times more effective at killing cancer cells than either ciglitazone or resveratrol. Energy restrictions triggered by the drug resulted in the cancer cells dying from a combination of autophagy and apoptosis.

"Our study proves that this new agent kills cancer cells through energy restriction, said senior author Dr. Ching-Shih Chen, professor of medicinal chemistry, internal medicine and urology at Ohio State University. "This is important because it shows that it is possible to design drugs that target energy restriction, and it is exciting because energy-restricting mimetic agents may also be useful for other diseases, including metabolic syndromes, diabetes, cardiovascular disease, and obesity. Energy restriction may offer a powerful new strategy for treating cancer because it targets a survival mechanism used by many types of cancer.”

Related Links:
Ohio State University


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Urine Collection Container
Urine Monovette
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.