We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technique Melts DNA into a Barcode

By LabMedica International staff writers
Posted on 18 Aug 2010
Print article
An entirely new method for producing an image of individual DNA molecules' genetic composition has been developed by researchers in Sweden and Denmark.

The study's findings were published in the July 13, 2010, issue of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS). "The technique is quicker, easier, and cheaper than existing methods. Therefore, we hope that it can be used in hospitals in the future. Mapping a person's genome, or genetic make-up, is currently an expensive and complicated process,” explained Dr. Jonas Tegenfeldt, researcher in solid-state physics at Lund University (Sweden) and one of the senior authors of the article.

According to the researchers, the technique could be used to find out more easily whether someone is carrying a genetic predisposition to certain diseases. The hope is that it could be used to diagnose and characterize diseases that are caused by considerable alterations and mutations in the genetic composition, known as structural variations, that are tied to, for example, cancer, autism, and several hereditary diseases. In addition, the technique could be of use in criminal investigations, because it might speed up identification of evidence.

The technique, which has recently been patented, utilizes the fact that different parts of the DNA molecule melt at different temperatures. A key component of the DNA molecule is the nucleobase pairs: AT (adenine and thymine), and GC (guanine and cytosine). The GC pair is more firmly bound and it requires a higher temperature to melt.

By first stretching out the tightly twisted DNA molecule in a nanochannel and then heating it up so that only the AT pair melt, it is possible to obtain a ‘barcode' of the individual's 46 chromosomes. In order to make specific areas darker than others, the DNA molecule must be stained. The parts that melt--the AT parts--emit less fluorescence and become dark fields in the barcode.

The image produced shows the rough composition of the DNA molecule, and thus that of the chromosome. Such barcodes are not new, but this approach to creating the barcodes is completely original. With this method, the DNA analysis process becomes significantly shorter, from 24 hours to around one or two hours. "The barcode technique could be a simple way to identify what types of virus and bacteria we are dealing with. We can also find out whether something has gone wrong in the human genome, because it is possible to see if any part of the chromosome has moved for any reason. This is what happens in certain diseases,” explained Dr. Tegenfeldt, adding that beyond all the applications an important motivation for the research is still ‘just' basic scientific curiosity.

An additional advantage of this barcode technique over other techniques is that only one DNA molecule is required. The fact that the DNA does not have to be amplified also means that it is easy to compare a number of cells and thereby discover any differences between them. The method provides a rough image of the genome, but compared to other similar methods, such as chromosome banding, the image is still a thousand times sharper. The fact that the measurements must be performed on each molecule individually could also pose a limitation; it is not easy to obtain an average from a large number of molecules.

Related Links:

Lund University


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Automated Cell Counter
QuadCount
New
Progesterone Serum Assay
Progesterone ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.