We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




The Small Molecule that Might Revolutionize the Treatment of Diabetes

By LabMedica International staff writers
Posted on 30 Aug 2010
Print article
A small molecule has been identified that is able to stimulate the transformation of pancreatic alpha-cells into insulin producing beta-cells, a discovery with the potential for revolutionizing the treatment of diabetes.

Type I diabetes is an autoimmune disease in which the insulin-producing beta-cells are destroyed. Current treatment depends on the administration of insulin to replace the hormone that is no longer being produced by the pancreas. Researchers have been seeking ways to replenish the population of beta-cells, either through the use of stem cells or by transforming one of the other types of cells present in the islets of Langerhans. Of particular interest are alpha-cells, which normally secrete glucagon.

In the current study, investigators at Harvard University (Cambridge, MA, USA) used a mouse alpha-cell line to screen more than 30,000 small molecules for any compounds that could induce the alpha-cells to produce insulin. They reported in the August 9, 2010, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS) that one compound, BRD7389, induced insulin expression after three days of treatment. Induction of insulin gene expression peaked after five days, and the cells adopted a beta-cell-like morphology. At the molecular level, induction of insulin expression was found to involve inhibition of multiple members of the RSK (ribosomal s6 kinase) family of protein kinases.

"Small molecules have critical roles in all levels of biology—including cell growth, proliferation, sensing, and signaling—so researchers in academia and at pharmaceutical companies alike have a great interest in them. Our approach is discovery-based rather than hypothesis-driven. We want to define the properties of a cell in a particular state so we can study how they change as the cell becomes diseased. To understand a bodily process, it helps to perturb it with bioprobes and determine the consequences. We believe this approach could lead us to choose more effective compounds as candidate probes, and as a result uncover more relevant therapeutic targets for drug discovery,” said senior author Dr. Stuart L. Schreiber, professor of chemistry and chemical biology at Harvard University.


Related Links:
Harvard University


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.