We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Device Allows Collection, Analysis of Hard-to-Handle Immune Cells

By LabMedica International staff writers
Posted on 22 Sep 2010
Print article
Scientists have developed a new microfluidic tool for isolating rapidly and effectively neutrophils from small blood samples, an achievement that could provide information essential to determine better the immune system's response to traumatic injury. The system can also be modified to isolate almost any type of cell.

The research was published in August 2010 in advance online release in the journal Nature Medicine. "Neutrophils are currently garnering a lot of interest from researchers and clinicians, but collecting and processing them has been a real challenge,” said Kenneth Kotz, Ph.D., of the Massachusetts General Hospital (MGH; Boston, USA) Center for Engineering in Medicine, and lead author of the study. "This tool will allow a new range of studies and diagnostics based on cell-specific genomic and proteomic signatures.”

Part of the body's first-line defense against injury or infection, neutrophils were long thought to play fairly simple roles, such as releasing antimicrobial proteins and ingesting pathogens. However, recent studies find their actions to be more complex and critical to both chronic and acute inflammation, particularly the activation of the immune system in response to injury.

Examining patterns of gene expression and protein synthesis in neutrophils could reveal fundamental information about the immune response, but collecting the cells for analysis has been a challenge. Conventional isolation procedures take more than two hours and require comparatively large blood samples. Neutrophils also are sensitive to handling and easily become activated, changing the molecular patterns of interest, and they contain very small amounts of messenger RNA, which is required for studies of gene expression.

Building on their experience developing silicon-chip-based devices that capture CD4 T cells for HIV diagnosis or isolate circulating tumor cells, Dr. Kotz's team developed a system that gathers a neutrophil-rich sample from microliter-sized blood samples in less than five minutes, reducing the risk of disturbing cells in the process. To meet the requirements for speed and precision, the researchers totally redesigned the geometry, antibody-based coating, and other features of the cell-capture module at the heart of the device. The samples gathered were successful in revealing differences in gene and protein activity relevant to the cells' activation status.

While the laboratory tests were encouraging, samples from critically injured patients need to be handled and processed in real-world clinical environments. Through the efforts of study coauthor Lyle Moldawer, Ph.D., of the University of Florida College of Medicine, the devices were tested at six sites participating in a major U.S. National Institutes of Health (Bethesda, MD, USA)-sponsored study of the immune response to injury, led by Ronald Tompkins, M.D., Sc.D., chief of the MGH Burns Service and also a study coauthor. Analyzing samples from 26 patients with serious burns or other traumatic injuries revealed complicated gene expression patterns that shifted during the 28 days after injury, most likely reflecting complex interactions between various immune system components.

Dr. Kotz stated, "Until now, it's been logistically impossible to study neutrophils to the extent we have in this paper.” He noted that their analysis of neutrophil samples from trauma patients is the largest such study to date and added, "This technology--which is much faster and gentler than current approaches to isolating cells--can be scaled and modified to capture just about any cell type, and we're working to apply it to other cell-based assays.”

Related Links:

Massachusetts General Hospital




Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Chlamydia Test Kit
CHLAMYTOP
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.