We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cloud Computing Software Greatly Increases RNA Analysis

By LabMedica International staff writers
Posted on 30 Sep 2010
Print article
Researchers have developed new software that greatly improves the speed at which scientists can analyze sequencing RNA data.

RNA sequencing is used to compare differences in gene expression to identify those genes that switched on or off when, for instance, a particular disease is present. However, sequencing instruments can produce billions of sequences per day, which can be time-consuming and costly to analyze. The software, known as Myrna, uses "cloud computing,” an Internet-based method of sharing computer resources. Faster, cost-effective analysis of gene expression could become a beneficial tool in understanding the genetic causes of disease. The findings are published in August 11, 2010, in the journal Genome Biology. The Myrna software is available for free download (please see related linka below).

Cloud computing bundles together the processing power of the individual computers using the Internet. A number of firms with large computing centers including, Amazon and Microsoft, rent unused computers over the Internet for a fee.

"Cloud computing makes economic sense because cloud vendors are very efficient at running and maintaining huge collections of computers. Researchers struggling to keep pace with their sequencing instruments can use the cloud to scale up their analyses while avoiding the headaches associated with building and running their own computer center,” commented lead author, Dr. Ben Langmead, a research associate in the Johns Hopkins Bloomberg School of Public Health (Baltimore, MD, USA) department of biostatistics. "With Myrna, we tried to make it easy for researchers doing RNA sequencing to reap these benefits.”

To evaluate Myrna, Dr. Langmead and colleagues Kasper Hansen, Ph.D., a postdoctoral fellow, and Jeffrey T. Leek, Ph.D., senior author of the study and assistant professor in the department of biostatistics, employed the software to process a large collection of publicly available RNA sequencing data. Processing time and storage space were rented from Amazon Web Services. According to the study, Myrna calculated differential expression from 1.1 billion RNA sequencing reads in less than two hours at cost of about US$66.

"Biological data in many experiments--from brain images to genomic sequences--can now be generated so quickly that it often takes many computers working simultaneously to perform statistical analyses,” said Dr. Leeks. "The cloud computing approach we developed for Myrna is one way that statisticians can quickly build different models to find the relevant patterns in sequencing data and connect them to different diseases. Although Myrna is designed to analyze next-generation sequencing reads, the idea of combining cloud computing with statistical modeling may also be useful for other experiments that generate massive amounts of data.”

Related Links:

Johns Hopkins Bloomberg School of Public Health
Myrna Software



New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.