We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarkers Identified for Personalizing Radiation Cancer Treatment

By LabMedica International staff writers
Posted on 27 Oct 2010
Print article
Radiation therapy is used to treat more than half of all cancer cases, but patient response to therapy can vary greatly. Genetics is increasingly being recognized as a significant contributor to inter-individual response to radiation, but the biology underlying response remains poorly understood. In a recent study, researchers utilized a pharmacogenomics strategy to find biomarkers associated with radiation response that could help to customize more effectively individual cancer treatments.

If genetic variants and biologic processes contributing to radiation response are identified, more personalized treatment approaches could be employed in the clinic.

In this study, researchers led by Dr. Liewei Wang of the Mayo Clinic (Rochester, MN, USA), performed a genome-wide association study on 277 ethnically defined human lymphoblastoid cell lines (LCLs) to identify biomarkers for radiation response. Earlier studies have found that genetic variation considerably influences gene expression following radiation treatment; however, a possible relationship of basal gene expression with radiation response has not been extensively evaluated until now, and could be critical to predicting response. The group incorporated several lines of data from the LCLs, including 1.3 million single nucleotide polymorphisms (SNPs), genome-wide gene expression data, and ionizing radiation cytotoxicity phenotypes.

By looking for SNPs and gene expression patterns that associate with a radiation response phenotype, Dr. Wang's team narrowed down a list of candidate genes associated with radiation treatment response. To validate the biomarkers functionally, the team assessed the associations of a set of the candidate genes in three cancer cell lines. The validation experiments confirmed the expression of five genes as involved in radiation-induced response.

Dr. Wang noted that this work not only identifies biomarkers, but also sets the stage for uncovering novel functions of these genes that could ultimately benefit individual patients. "These studies will provide a foundation for future translational studies to individualize radiation therapy based on the expression of these candidate genes,” conlcuded Dr. Wang, "and may make it possible to design novel combination therapy for selected patients based on these biomarkers to overcome resistance.”

The study's findings were published online October 5, 2010, in the journal Genome Research.

Related Links:

Mayo Clinic



New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Automated Nucleic Acid Extractor
eLab
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.