We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Compound Discovered in Florida Keys Shows Potential as Colon Cancer Treatment

By LabMedica International staff writers
Posted on 01 Nov 2010
Print article
A chemical compound made from a type of bacteria discovered in the Florida Keys (USA) by a pharmacy researcher has shown effectiveness in fighting colon cancer in preclinical research.

Writing online October 2010 in the Journal of Pharmacology and Experimental Therapeutics, scientists from the University of Florida (UF; Gainesville, USA) reported that the compound--known as largazole because it was first discovered near Key Largo--suppresses human cancer cell growth in cultures and rodent models by attacking a class of enzymes involved in the packaging and structure of DNA.

More research is needed, but scientists hope that the finding will lead to new treatments for the about 50,000 people struck with colorectal cancer each year in the United States. Researchers are enthusiastic because in addition to having the marine bacteria as a natural source of the chemical, they have been able to produce synthetically the active chemical compound extracted from the bacteria.

"It is challenging to develop natural marine products into drug therapies due to what is termed the ‘the supply problem,'” said Dr. Hendrik Luesch, an associate professor of medicinal chemistry in the UF College of Pharmacy. "We have solved the supply problem for largazole because it has a relatively simple structure, which has made it easy to reproduce in the lab.”

The Luesch lab discovered largazole while studying samples of bacteria from the Florida Keys, publishing the finding in 2008. Known as cyanobacteria, the microbes have evolved to fend off predators or deal with harsh conditions in a marine environment, employing toxins to aid their own survival. The toxins are the compounds chemists such as Dr. Luesch desire to isolate and understand in a quest to create drugs that similarly fend off invading cancers in the body.

Since the discovery, Dr. Luesch's lab determined the compound inhibits enzymes known as histone deacetylases (HDACs), which are linked to many diseases and are increasingly viewed as promising for cancer therapy. Dr. Jiyong Hong, an assistant professor of chemistry at Duke University (Durham, NC, USA), teamed with the UF researchers to chemically reproduce the compound for additional preclinical testing, which indicates it is a potent inhibitor of cancer cells that has the right characteristics to reach its intended target without the toxic side effects of many cancer drugs.

"Knowing HDAC is the target that makes largazole effective means we can predict good drug properties because there are already two anticancer products on the market that work this way,” said Dr. Luesch, who is a member of the UF Shands Cancer Center.

Three important features make this marine compound more promising than other natural products as an effective cancer-fighting drug, Dr. Luesch noted that availability of supply, knowing its mode of action, and the fact that its cellular target is already a known anticancer target known to result in the necessary selectivity for cancer cells over normal cells.

Dr. Luesch presented the study's findings September 9, 2010, at the Marine Drug Discovery Symposium in Pohang, South Korea, and later in Mid-October at the Marine Natural Products Symposium in Phuket, Thailand. The research is planned for publication in the November 2010 issue of the Journal of Pharmacology and Experimental Therapeutics.

Related Links:
University of Florida
Duke University


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Static Concentrator
BJP 10
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.