We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Better Biosensors Made with Electron Density Waves

By LabMedica International staff writers
Posted on 18 Nov 2010
An emerging field called optofluidic plasmonics has the potential for a new way to detect and analyze biologic molecules for drug discovery, medical diagnostics, and the detection of biochemical weapons. More...


Investigators from the University of California, San Diego (UCSD; USA) led by Dr. Yeshaiahu Fainman have succeeded in merging a microfluidics system with plasmonics--also called "light on a wire”--onto a single platform. Plasmonics is based on electron waves on a metal surface excited by incoming light waves.

According to Dr. Fainman, tapping the potential of plasmonics for biomolecule detection systems has been a challenge, because localized optical field scales are usually much larger than the molecules being studied. In order to make a useful optical biosensor, he stated, "We need to increase the interaction cross-section by finding ways to localize optical interrogation fields ideally to the scales comparable to those of biomolecules.”

Since that is not currently possible, he and his team used an approach of integrating microfluidics and plasmonics on single chips, allowing fluid to transport the molecules into the cross-section of the optical field. Dr. Fainman expects the system to be especially beneficial in examining large arrays of protein-protein interactions for identifying potential drugs that bind to specific target molecules, which may lead to earlier cancer diagnoses and faster discovery of new drugs. Unlike most traditional techniques, optical detection does not require labeling of molecules with fluorescent or radioactive entities--labels frequently suppress interaction by covering up or blocking binding surfaces.

The new platform also carries the advantage of being high throughput and multiplexed, offering researchers an opportunity to examine thousands of arrayed compounds simultaneously, which Dr. Fainman concluded, "Biologists and physicians get very excited about.”

The study's findings were presentation, presented October 26, 2010, at the Frontiers in Optics (FiO) 2010/Laser Science XXVI--the 94th annual meeting of the Optical Society (OSA), which was held together with the annual meeting of the American Physical Society (APS) Division of Laser Science in Rochester, NY, USA, from October 24-28.

Related Links:
University of California, San Diego


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Monarch Mag Cell-free DNA (cfDNA) Extraction Kit provides isolation of low-abundance cfDNA from a range of biofluids (Photo courtesy of New England Biolabs)

New Extraction Kit Enables Consistent, Scalable cfDNA Isolation from Multiple Biofluids

Circulating cell-free DNA (cfDNA) found in plasma, serum, urine, and cerebrospinal fluid is typically present at low concentrations and is often highly fragmented, making efficient recovery challenging... Read more

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: The innovative classifier can guide treatment for PDAC and other immunotherapy-resistant cancers (Photo courtesy of Adobe Stock))

Single Sample Classifier Predicts Cancer-Associated Fibroblast Subtypes in Patient Samples

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers, in part because of its dense tumor microenvironment that influences how tumors grow and respond to treatment.... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.