Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Supercomputing Technology Creates Opportunities for Drug Discovery

By LabMedica International staff writers
Posted on 25 Jan 2011
A faster and cost-effective technique to scan molecular databases could put scientists on the fast track to developing new drug treatments.

A team led by Dr. More...
Jerome Baudry of the University of Tennessee and the US Department of Energy's Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics (Oak Ridge, USA) adapted a widely used existing software to allow supercomputers such as ORNL's Jaguar to filter through massive molecular databases and pinpoint chemical compounds as potential drug candidates.

The research was published online December 2010 online ahead of print in the Journal of Computational Chemistry. "Our research is the missing link between supercomputers and the huge data available in molecular databases like the Human Genome Project,” Dr. Baudry said. "We have an avalanche of data available to us, and now we need to translate that data into knowledge.”

Such translation is vital for the first stages of drug development, in which researchers look for applicable chemicals that interact with a target in the body, typically a protein. If the chemical is suitable, it attaches onto the protein and produces a desirable effect in the cell. However, with thousands of known proteins and millions of chemicals as potential drugs, the number of possible combinations is enormous. "It is very expensive and time-consuming to measure these interactions experimentally,” Dr. Baudry stated. "But with supercomputers, we can process millions of molecules a day.”

The fast and efficient processing of molecules gives scientists an opportunity to take risks on previously unexamined drug candidates, which could lead to diverse and novel classes of drugs. "Before, we threw away a lot of information because molecules did not have a preferred profile,” Dr. Baudry noted. "Now, every molecule can be examined without worrying about wasting resources.”

The scientists have already begun work to launch the research into reality through a new collaboration supported by the US National Institutes of Health (Bethesda, MD, USA). The project team plans to put the computational development to work on ORNL supercomputers to search for chemicals that could treat prostate cancer.

"Our development work is the computational equivalent of building the Saturn V rocket,” Dr. Baudry concluded. "Now we want to fly it to the moon.”

Related Links:

Oak Ridge National Laboratory Center for Molecular Biophysics




Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.