We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Super Resolution Microscopy Catches the Malaria Parasite in the Act

By LabMedica International staff writers
Posted on 21 Feb 2011
Print article
Parasitology researchers employing sophisticated image gathering and cell culture techniques have, in real time, followed the process by which the merozoite stage of the malaria parasite Plasmodium falciparum invades human red blood cells.

Investigators at the Walter and Eliza Hall Institute (Melbourne, Australia) used fluorescence, three-dimensional (3D) structured illumination, and immunoelectron microscopy of filtered merozoites, to analyze cellular and molecular events underlying each discrete step of the invasion process. The imaging technology, called OMX 3D SIM super resolution microscopy, is a powerful new 3D tool that enables capturing images of cellular processes unfolding at nanometer scales.

Results published in the January 2011 issue of the journal Cell Host & Microbe revealed that that commitment to the cell invasion process was mediated through merozoite attachment to the erythrocyte, triggering all subsequent invasion events, which then proceeded without obvious checkpoints. Instead, coordination of the invasion process involved formation of the merozoite-erythrocyte tight junction, which acted as a nexus for secretion by a specialized secretory organelle called the rhoptry, surface-protein shedding, and actomyosin motor activation.

"Historically it has been very difficult to both isolate live and viable parasites for infection of red blood cells and to employ imaging technologies sensitive enough to capture snapshots of the invasion process with these parasites, which are only one micron (one millionth of a meter) in diameter,” said senior author Dr. Jake Baum, researcher in molecular biology at the Walter and Eliza Hall. "It is the first time we have been able to actually visualize this process in all its molecular glory, combining new advances developed at the institute for isolating viable parasites with innovative imaging technologies.”

"Super resolution microscopy has opened up a new realm of understanding into how malaria parasites actually invade the human red blood cell. Whilst we have observed this miniature parasite drive its way into the cell before, the beauty of the new imaging technology is that it provides a quantum leap in the amount of detail we can see, revealing key molecular and cellular events required for each stage of the invasion process.”

Related Links:

The Walter and Eliza Hall Institute



New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Flow Cytometer
BF – 710
New
Automated Nucleic Acid Extractor
eLab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.