Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Removable "Cloak" Designed for Nanoparticles to Target Tumors

By LabMedica International staff writers
Posted on 18 May 2011
Chemical engineers have designed a new type of drug-delivery nanoparticle that exploits a trait shared by nearly all tumors: they are more acidic than healthy tissues. More...


Such particles could target nearly any type of tumor, and can be designed to carry virtually any type of drug, according to Dr. Paula Hammond, a member of the David H. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) and senior author of an article describing the particles online April 23, 2011, in the journal ACS Nano.

Similar to most other drug-delivering nanoparticles, the new MIT particles are cloaked in a polymer layer that protects them from being degraded by the bloodstream. However, the MIT team, including lead author and postdoctoral associate Dr. Zhiyong Poon, designed this outer layer to fall off after entering the slightly more acidic environment near a tumor. That reveals another layer that is able to penetrate individual tumor cells.

In the article, the researchers reported that, in mice, their particles survive in the bloodstream for up to 24 hours, accumulate at tumor sites and enter tumor cells. The new MIT approach differs from that taken by most nanoparticle designers. Typically, researchers try to target their particles to a tumor by decorating them with molecules that bind specifically to proteins found on the surface of cancer cells. The difficulty with that approach is that it is difficult to find the right target--a molecule found on all of the cancer cells in a particular tumor, but not on healthy cells. In addition, a target that works for one type of cancer might not work for another.

Dr. Hammond and her colleagues decided to exploit the properties of tumor acidity, which is a byproduct of its increased metabolism. Tumor cells grow and divide much more rapidly than normal cells, and that metabolic activity uses up a lot of oxygen, which increases acidity. As the tumor grows, the tissue becomes more and more acidic.

To construct their targeted particles, the researchers used a technique called "layer-by-layer assembly." This means each layer can be customized to perform a specific function.

When the outer layer (comprised of polyethylene glycol [PEG]) breaks down in the tumor's acidic environment, a positively charged middle layer is revealed. That positive charge helps to overcome another obstacle to nanoparticle drug delivery: Once the particles reach a tumor, it is difficult to get them to enter the cells. Particles with a positive charge can penetrate the negatively charged cell membrane, but such particles cannot be injected into the body without a "cloak" of some kind because they would also destroy healthy tissues.

The polymer coating is shed as the particle approaches a tumor, exposing positive charges. Those charges help the particle be absorbed through the tumor cell membrane. The nanoparticles' innermost layer can be a polymer that carries a cancer drug, or a quantum dot that could be used for imaging, or virtually anything else that the designer might want to deliver, according to Dr. Hammond, who is a professor of chemical engineering at MIT.

Other researchers have tried to design nanoparticles that take advantage of tumors' acidity, but Dr. Hammond's particles are the first that have been successfully tested in living animals. The researchers are planning to additionally develop these particles and assess their ability to deliver drugs in lab animals. Dr. Hammond expects it could take five to 10 years of development before human clinical trials could begin.

Dr. Hammond's team is also working on nanoparticles that can carry multiple payloads. For example, the outer PEG layer might carry a drug or a gene that would "prime" the tumor cells to be susceptible to another drug carried in the particle's core.

Related Links:

Massachusetts Institute of Technology




Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.