We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Photodynamic Nanoparticles Reveal Toxic Proximity Effect

By LabMedica International staff writers
Posted on 14 Jun 2011
Print article
Nanoparticles coated with and carrying light-sensitive molecules were capable - after photoactivation - of killing cancer cells from within the cells or when in close proximity.

Investigators at the University of Hull (United Kingdom) assembled two types of polyacrylamide nanoparticles. Each type was loaded with a different photodynamic sensitizer. One group, comprised polylysine bound tetrasulfonato-aluminum phthalocyanine entrapped nanoparticles (PCNP) and polylysine bound tetrasulfonato-aluminum phthalocyanine entrapped nanoparticles coated with a second, porphyrin based, photosensitizer (PCNP-P) to enhance the capacity for ROS generation, and hence therapeutic potential.

Uptake of the nanoparticles by human Caucasian colon adenocarcinoma cells (HT29) was determined by flow cytometry and confocal microscopy. Results published in the June 6, 2011, issue of the journal Molecular Pharmaceutics revealed that the cancer cells were damaged by light activation of these photodynamic nanoparticles, which allowed toxic reactive oxygen species to diffuse freely out of the particles, both in the external media and after internalization.

The results suggest that, in order to induce photodynamic damage, the nanoparticles need only to be associated with the tumor cell closely enough to deliver singlet oxygen: their internalization within target cells may not be necessary.

"Small cancer tumors get nutrients and oxygen by diffusion, but once tumors reach a certain size, they need to create blood vessels to continue growing," said senior author Dr. Ross Boyle, professor of chemistry at the University of Hull. "These new blood vessels, or neovasculature, are "leaky" because the vessel walls are not as tightly knit as normal blood vessels. Our nanoparticles have been designed so the pressure in the blood vessels will push them through the space between the cells to get into the tumor tissue."

"Some types of cancer cell are able to expel conventional drugs, so if we can make this kind of therapy work simply by getting the nanoparticles between the cancer cells, rather than inside them, it could be very beneficial," said Dr. Boyle.

Related Links:

University of Hull



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Static Concentrator
BJP 10
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.