We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Imaging Technique Can Quantitatively Measure Cell Mass with Light

By LabMedica International staff writers
Posted on 08 Sep 2011
Print article
Researchers are providing new clues into the weighty question of cell growth.

Led by electrical and computer engineering professor Dr. Gabriel Popescu, from the University of Illinois (Urbana-Champaign, USA), the investigators developed a new imaging technique called spatial light interference microscopy (SLIM) that can measure cell mass using two beams of light. Published ahead of print July 25, 2011, in the Proceedings of the [US] National Academy of Science, the SLIM technique offers new clues into the much-debated question of whether cells grow at a constant rate or exponentially.

SLIM is extremely sensitive, quantitatively measuring mass with femtogram accuracy. By comparison, a micrometer-sized droplet of water weighs 1,000 femtograms. It can measure the growth of a single cell, and even mass transport within the cell. Yet, the technique is broadly applicable. “A significant advantage over existing methods is that we can measure all types of cells--bacteria, mammalian cells, adherent cells, nonadherent cells, single cells, and populations,” said Mustafa Mir, a graduate student and a first author of the article. “And all this while maintaining the sensitivity and the quantitative information that we get.”

Unlike most other cell-imaging techniques, SLIM--a combination of phase-contrast microscopy and holography--does not need staining or any other special preparation. Because it is completely noninvasive, the researchers can study cells as they go about their natural functions. It uses white light and it can be combined with more traditional microscopy techniques, such as fluorescence, to monitor cells as they grow. “We were able to combine more traditional methods with our method because this is just an add-on module to a commercial microscope,” Mr. Mir said. “Biologists can use all their old tricks and just add our module on top.”

Because of SLIM’s sensitivity, the scientists could monitor cells’ growth through different phases of the cell cycle. They discovered that mammalian cells show clear exponential growth only during the G2 phase of the cell cycle, after the DNA replicates and before the cell divides. This information has great implications not only for essential biology, but also for diagnostics, drug development, and tissue engineering.

The researchers hope to apply their new knowledge of cell growth to different disease models. For example, they plan to use SLIM to see how growth varies between normal cells and cancer cells, and the effects of treatments on the growth rate.

Dr. Popescu, a member of the Beckman Institute for Advanced Science and Technology at the University of Illinois, is establishing SLIM as a shared resource on the Illinois campus, hoping to exploit its flexibility for basic and clinical research in a number of areas. “It could be used in many applications in both life sciences and materials science,” stated Dr. Popescu, who also is a professor of physics and of bioengineering. “The interferometric information can translate to the topography of silicon wafers or semiconductors. It’s like an iPad--we have the hardware, and there are a number of different applications dedicated to specific problems of interest to different labs.”

Related Links:

University of Illinois




Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.