We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Substances Produced by Gut Bacteria Modulate Drug Performance

By LabMedica International staff writers
Posted on 24 Oct 2011
Print article
A recent study found that the effectiveness of a cholesterol-lowering statin was related to levels of bile acids produced by bacteria growing in the digestive tract.

Investigators at Duke University (Durham, NC, USA) employed a metabolomic approach to examine how gut bacterial influenced the efficacy of simvastatin.

They used a targeted gas chromatography – mass spectroscopy (GC-MS) metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that could predict variation in statin low-density lipoprotein-cholesterol (LDL-C) lowering efficacy. Subjects in the study were participants in the national Cholesterol and Pharmacogenetics (CAP) study. For the current experiment, the investigators selected 100 people from the CAP study whose LDL-C fell dramatically as a result of taking simvastatin; 24 who had a fairly good response on the drug; and 24 who showed little benefit.

Results published in the October 13, 2011, online edition of the journal PLoS One revealed the identity of three secondary, bacterial-derived bile acids that contributed to the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine, and increased plasma concentration of simvastatin positively correlated with higher levels of these three secondary bile acids.

These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome, and environmental influences should be considered in the study and management of cardiovascular disease. “This is personalized medicine – the effects of drugs and how we respond,” said first author Dr. Rima Kaddurah-Daouk, associate professor of psychiatry at Duke University. “We found that the benefit of statins could be partly related to the type of bacteria that lives in our guts. The reason we respond differently is not only our genetic makeup, but also our gut microbiome.”

“We really need to partner with diagnostic and pharmaceutical companies to target drugs for subpopulations,” said Dr. Kaddurah-Daouk. “… no doubt that metabolites from bacteria are playing an important role in regulating our systems. We are at a very early stage of understating this relationship, but eventually we could take a quick chemical assay and get a read on where we are metabolically.”

Related Links:
Duke University




Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Crypto + Giardia One Step Combo Card Test
CerTest Crypto + Giardia
New
Rheumatoid Arthritis Test
Finecare RF Rapid Quantitative Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.