We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Strategy Found to Delay Age-Related Disorders

By LabMedica International staff writers
Posted on 22 Nov 2011
Print article
Scientists have demonstrated that eliminating cells that accrue with age could prevent or delay the onset of age-related disorders and disabilities. The research, conducted in mouse models, provides the first evidence that these cells could contribute to aging and suggests a way to help people stay healthier as they age.

The findings were published November 2, 2011, in the journal Nature, along with an independent commentary on the discovery. “By attacking these cells and what they produce, one day we may be able to break the link between aging mechanisms and predisposition to diseases like heart disease, stroke, cancers, and dementia,” remarked coauthor James Kirkland, MD, PhD, head of the Mayo Clinic’s (Rochester, MN, USA) Robert and Arlene Kogod Center on Aging, and a professor of aging research. “There is potential for a fundamental change in the way we provide treatment for chronic diseases in older people.”

Fifty years ago, scientists discovered that cells undergo a finite number of divisions before they stop dividing. At that point, the cells reach a state called cellular senescence where they neither die nor continue to multiply. They produce factors that injure adjacent cells and cause tissue inflammation. This alternate cell fate is believed to be a mechanism to prevent runaway cell growth and the spread of cancer. The immune system sweeps out these dysfunctional cells on a regular basis, but over time becomes less effective at “keeping house.”

As a result, senescent cells accumulate with age. Whether and how these cells cause age-related diseases and dysfunction has been a major open question in the field of aging. One reason the question has been so difficult to answer is that the numbers of senescent cells are quite limited and comprise at most only 10% to 15% of cells in an elderly individual.

“Our discovery demonstrates that in our body cells are accumulating that cause these age-related disorders and discomforts,” noted senior author Jan van Deursen, PhD, a Mayo Clinic molecular biologist and professor of cellular senescence. “Therapeutic interventions to get rid of senescent cells or block their effects may represent an avenue to make us feel more vital, healthier, and allow us to stay independent for a much longer time.”

“Through their novel methodology, the researchers discovered that deletion of senescent cells in genetically engineered mice led to improvement in at least some aspects of the physiology of these animals. So, with the caveat that the study involved a mouse model displaying accelerated aging, this paper provides important insights on aging at the cellular level,” said Felipe Sierra, PhD, director of the division of aging biology, US National Institute on Aging, National Institutes of Health (Bethesda, MD, USA).

Dr. van Deursen and colleagues genetically modified mice so their senescent cells harbored a molecule called caspase 8 that was only activated in the presence of a drug that has no effect on normal cells. When the transgenic mice were exposed to this drug, caspase 8 was triggered in the senescent cells, drilling holes in the cell membrane to destroy the senescent cells specifically.

The researchers discovered that lifelong elimination of senescent cells delayed the onset of age-related disorders such as cataracts, muscle loss, and weakness. Possibly, even more significantly, they showed that taking out these cells later in life could slow the progression of already established age-related disorders.

The findings, according to the researchers, validate a role of senescent cells in the aging process and demonstrate that chemicals secreted by these cells contribute to age-related tissue dysfunction and disease.

Related Links:

Mayo Clinic


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Flow Cytometer
BF – 710
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.