Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Taccalonolides Selectively Kill Cancer Cells

By LabMedica International staff writers
Posted on 04 Dec 2011
Drug developers have defined the structural and functional relationship between the taccalonolide class of potential therapeutic agents and the microtubule component tubulin.

The taccalonolides are a class of microtubule stabilizing agents isolated from plants of the genus Tacca. Functionally, they resemble the taxane drug paclitaxel (and docetaxel, a synthetic derivative of the naturally occurring compound paclitaxel), which disrupts microtubule function, inhibiting cell replication. More...
One of the roles of normal microtubules is to aid in the replication of cells, and paclitaxel promotes the formation of microtubules that do not function properly, thus disrupting this function and inhibiting cell replication. Suppression of bone marrow function is the principal adverse side effect associated with paclitaxel treatment.

In the current study, investigators at the University of Texas Health Science Center (San Antonio, USA) sought an explanation at the molecular level as to how the taccalonides interact with and stabilize microtubules.

They reported in the November 1, 2011, online edition of the Journal of the American Chemical Society that they had isolated five new taccalonolides, AC–AF and H2, from one fraction of an ethanol extract of Tacca plantaginea. Taccalonolide AJ, an epoxidation product of taccalonolide B, was generated by semisynthesis. Structures of the compounds were elucidated using a combination of spectroscopic methods, including NMR (nuclear magnetic resonance) and high-resolution mass spectroscopy.

Five of these taccalonolides demonstrated cellular microtubule-stabilizing activities and antiproliferative actions against cancer cells. In mechanistic assays, taccalonolides AF and AJ stimulated the polymerization of purified tubulin, an activity that had not previously been observed for taccalonolides A and B, providing the first evidence that this class of microtubule stabilizers can interact directly with tubulin/microtubules.

“We have been working with these for years with some good results, but never with the potency of paclitaxel,” said senior author Dr. Susan Mooberry, professor of pharmacology at the University of Texas Health Science Center. “Now we have that potency, and we also show for the first time the taccalonolides’ cellular binding site. The taccalonolides stabilize microtubules in cancer cells, but they do not attack healthy cells. We have run normal prostate cells and normal breast cells through these tests, and they do not die. The taccalonolides selectively kill cancer cells.”

Related Links:
University of Texas Health Science Center



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.