We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Technology Developed for Mapping Blood Vessels May Aid Cancer Research

By LabMedica International staff writers
Posted on 08 Dec 2011
Print article
Similar to healthy tissue, tumors flourish on nutrients carried to them by the blood stream. The fast growth of new blood vessels is a key characteristic of cancer, and new research has demonstrated that suppressing blood vessel growth can also keep tumors from growing. To determine better the relationship between cancer and the vascular system, scientists are making detailed maps of the entire network of blood vessels in organs.

Regrettably, the current mapping process is time-consuming: using traditional methods, mapping a 1-cm block of tissue can take months. In a paper published in the October 2011 issue of the Optical Society’s (OSA) open-access journal Biomedical Optics Express, computational neuroscientists from Texas A&M University (College Station, USA), along with collaborators at the University of Illinois (Urbana-Champaign, USA) and Kettering University (Flint, MI, USA), described a new system, evaluated in mouse brain samples, that considerably reduces that time.

The technology employs a technique called knife-edge scanning microscopy (KESM). First, blood vessels are filled with ink, and the whole brain sample is embedded in plastic. Next, the plastic block is placed onto an automated vertically moving stage. A diamond knife shaves a very thin slice -one micrometer or less--off the top of the block, imaging the sample line by line at the tip of the knife. Each tiny movement of the stage triggers the camera to take a picture. In this way, the researchers can get the full 3D structure of the mouse brain’s vascular network--from arteries and veins down to the smallest capillaries--in less than two days at full production speed. In the future, the investigators plan to augment the process with fluorescence imaging, which will allow researchers to tie brain structure to function.

Related Links:
Texas A&M University
University of Illinois
Kettering University


Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Automated Cell Counter
QuadCount
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.