We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetically Engineered Tobacco Plants Manufacture Antimalaria Drug

By LabMedica International staff writers
Posted on 02 Jan 2012
Print article
A line of genetically engineered tobacco plants has been developed that carry all the genes required to encode the entire biochemical pathway necessary for producing the potent, but expensive to produce, antimalarial drug artemisinin.

Artemisinin, a natural compound from Artemisia annua (sweet wormwood) plants, is highly effective against drug-resistant malaria, but low-cost artemisinin-based drugs are lacking because of the high cost of obtaining the natural or chemically synthesized compound.

In seeking a way to produce a low-cost version of artemisinin, investigators at the Hebrew University of Jerusalem (Israel) turned to the tobacco plant. Tobacco has high biomass and grows rapidly, so a suitably modified version would be able to produce large quantities of the drug at low cost.

A recent paper in the December 8, 2011, online edition of the journal Nature Biotechnology reported that such a genetically modified tobacco plant was now available. The authors described the creation of transgenic plants that expressed five plant- and yeast-derived genes involved in the mevalonate and artemisinin pathways, all expressed from a single vector. This study demonstrated that artemisinin can be fully biosynthesized in a heterologous (that is, other than A. annua) plant system. Although the artemisinin levels that were generated in transgenic tobacco were currently lower than those in A. annua, this experimental platform may lead to the design of new routes for the drug's commercial production in heterologous plant systems.

This invention has been patented by Yissum (Jerusalem, Israel), the technology transfer arm of the Hebrew University of Jerusalem, which is now seeking a partner for its further development.

Yaacov Michlin, CEO of Yissum said, “This technology provides, for the first time, the opportunity for manufacturing affordable artemisinin by using tobacco plants. We hope that this invention will eventually help control this prevalent disease, for the benefit of many millions of people around the globe, and in particular in the developing world.”

Related Links:

Hebrew University of Jerusalem
Yissum

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Static Concentrator
BJP 10
New
Flu Test
ID NOW Influenza A & B 2

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.