We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Manipulating the Ubiquitination Process May Overcome Glioblastoma Resistance

By LabMedica International staff writers
Posted on 09 Feb 2012
Print article
A complex molecular pathway protects glioblastoma, an aggressive and lethal brain cancer, from treatment based on drugs that target the TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL) apoptotic pathway.

The TRAIL apoptotic pathway has emerged as a therapeutic target for the treatment of cancer. However, clinical trials have proven that the vast majority of human cancers are resistant to this approach. In a study seeking ways to overcome this resistance, investigators at Emory University (Philadelphia, PA, USA) worked with tumor-initiating cells isolated from glioblastomas surgically removed from patients.

They reported in the January 24, 2012 online edition of the journal Cancer Discovery that A20 E3 (tumor necrosis factor, alpha-induced protein 3 or TNFAIP3) ligase was highly expressed in these cells along with receptor interacting protein 1 (RIP1), and the apoptotic protein caspase-8. Together, these proteins formed a potent signaling complex.

When TRAIL interacted with this complex, the A20 E3 ligase triggered ubiquitination and destruction of RIP1, which interfered with activation of caspase-8 and prevented caspase-8-initiated apoptosis.

These results identify A20 E3 ligase as a therapeutic target whose inhibition can overcome TRAIL resistance in glioblastoma. “Scientists in this field have been hoping to treat this cancer with this new type of apoptosis pathway-targeted therapeutic drug, and this new information may provide a path forward,” said senior author Dr. Chunhai Hao, professor of neuropathology at Emory University.

“Previous research in this area has been unable to overcome the obstacle created by resistance,” said Dr. Hao. “This research shows one of the mechanisms for how we can manipulate the ubiquitination process to overcome the resistance to the apoptosis-targeted cancer therapies. Understanding the mechanisms of resistance is vital to developing therapies going forward.”

Related Links:
Emory University



New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.