We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Understanding Cancer Immunoediting Will Aid Vaccine Development

By LabMedica International staff writers
Posted on 29 Feb 2012
Print article
The body’s immune system employs the process of cancer immunoediting to eliminate tumor cells bearing highly antigenic mutant proteins and to suppress growth of those cancer cells that lack these antigens.

Cancer immunoediting, the process by which the immune system controls tumor outgrowth and shapes tumor immunogenicity, is comprised of three phases: elimination, equilibrium, and escape. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. To understand better the molecular basis that drives immunoediting, investigators at Washington University School of Medicine (St. Louis, MO, USA) induced the formation of sarcomas in a line of immunocompromised mice.

The investigators then used massive parallel DNA sequencing to characterize mutations expressed on the sarcoma cells, which were phenotypically similar to unedited primary tumors growing in immunocompetent hosts.

Results published in the February 16, 2012, issue of the journal Nature revealed that the genome of the sarcoma cells contained 3,743 mutations. Using class I prediction algorithms, they identified the protein produced by the mutant spectrin-beta2 gene as a potential rejection antigen of the sarcoma and validated this prediction by conventional antigen expression cloning and detection. They also demonstrated that cancer immunoediting occurred via a T-cell-dependent immunoselection process that promoted outgrowth of preexisting tumor cell clones lacking highly antigenic mutant spectrin-beta2 and other potential strong antigens.

“The idea would be to make a vaccine that helps the immune system recognize and attack six or seven of these mutated proteins in a cancer,” said senior author Dr. Robert Schreiber, professor of pathology and immunology at Washington University School of Medicine. “Therapeutically, that could be very helpful.”

“Many of the cancer genome projects now under way are looking for the “driver” mutations, or the mutations that cause the cancers,” said Dr. Schreiber. “Our results suggest there may be additional information in the sequencing data that can help us make the immune system attack cancers. Until very recently, this work would have been impractical because of the costs involved, but the technology has improved and prices have come down, and now it is possible to obtain this genetic information for a few thousand dollars instead of a million.”

Related Links:

Washington University School of Medicine


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Progesterone Serum Assay
Progesterone ELISA Kit
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.