Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Hyperthermic Treatment with Carbon Nanotubes Kills Breast Cancer Stem Cells

By LabMedica International staff writers
Posted on 01 Mar 2012
Hyperthermic treatment of breast tumors with multiwall carbon nanotubes (MWCNTs) has been found to kill both differentiated cancer cells and the breast cancer-stem cells that drive tumor growth and recurrence.

Breast tumors contain a small population of tumor initiating stem-like cells, termed breast cancer-stem cells (BCSCs). More...
These cells, which are refractory to chemotherapy and radiotherapy, are thought to persist following treatment and drive tumor recurrence.

Having successfully used MWCNTs to treat breast tumors in a mouse model, investigators at Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) examined their effect on. To this end, they worked with a mouse breast-cancer model. Tumors containing BCSCs were injected with nanotubes, which were then exposed to laser-generated, near-infrared radiation. The nanotubes vibrated, creating local areas of high temperature.

Results published in the April 2012 online edition of the journal Biomaterials revealed that that despite being markedly resistant to traditional hyperthermia BCSCs were sensitive to nanotube-mediated thermal treatment and lost their long-term proliferative capacity. Moreover, use of this therapy in vivo promoted complete tumor regression and long-term survival of mice bearing cancer stem cell-driven breast tumors.

The investigators speculated that nanotube thermal therapy promoted rapid membrane permeabilization and necrosis of the BCSCs. Destruction of the BCSCs prevented recurrence of the tumor.

“They are tough. These are cells that do not divide very often. They just sort of sit there, but when they receive some sort of trigger – and that is not really well understood – it is believed they can migrate to other sites and start a metastasis somewhere else,” said senior author Dr. Suzy Torti, professor of biochemistry at Wake Forest Baptist Medical Center. “Heat-based cancer treatments represent a promising approach for the clinical management of cancers, including breast cancer.”

“To truly cure a cancer, you have to get rid of the entire tumor, including the small population of cancer stem cells that could give rise to metastasis,” said Dr. Torti. “There is more research to be done. We are looking at five to 10 years of more study and development. But what this study shows is that all that effort may be worth it – it gives us a direction to go for a cure.”

Related Links:

Wake Forest Baptist Medical Center




Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.