We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Controlling Survivin Activity Could Stop Breast Cancer Without Harming Normal Tissue

By LabMedica International staff writers
Posted on 12 Apr 2012
Print article
Despite evidence linking high levels of the protein survivin to breast cancer, the mechanism that determines whether survivin acts to promote or inhibit cancer development has only now been explained.

Survivin is a member of the inhibitor of apoptosis (IAP) family. This protein inhibits caspase activation, thereby interfering with apoptosis. This has been shown by disruption of survivin induction pathways, which leads to increase in apoptosis and decrease in tumor growth. Survivin localizes to the mitotic spindle by interaction with tubulin during mitosis and may play a contributing role in regulating mitosis. The survivin protein is expressed highly in most human tumors and fetal tissue, but is completely absent in mature normal cells. This fact makes survivin an ideal target for cancer therapy, as cancer cells are targeted while normal cells are left alone. The molecular mechanisms of survivin regulation are still not well understood, but regulation of survivin seems to be linked to the p53 protein. It also is a direct target gene of the Wnt pathway and is upregulated by beta-catenin.

Investigators at Brown University (Providence, RI, USA) had previously shown that survivin had a dual function that was dependent on its subcellular localization. In the cytosol, survivin blocked apoptosis by inactivating caspase proteins. However, in the nucleus it facilitated cell division by regulating chromosomal movement and cytokinesis. Survivin was acetylated by CREB-binding protein (CBP), which restricted its localization to the nuclear compartment and thereby inhibited its antiapoptotic function.

In a study published in the February 9, 2012, online edition of the Journal of Biological Chemistry the investigators extended our understanding of how survivin works by showing that histone deacetylase 6 (HDAC6) was responsible for abrogating CBP-mediated survivin acetylation in an estrogen-receptor (ER) positive breast cancer cell line. Deacetylized survivin could then escape to the cytosol and prevent apoptosis, thereby stimulating tumor development.

HDACs are a group of enzymes closely related to sirtuins. They catalyze the removal of acetyl groups from lysine residues in histones and nonhistone proteins, resulting in transcriptional repression. HDACs have a role in cell growth arrest, differentiation, and death and this has led to substantial interest in HDAC inhibitors as possible antineoplastic agents. In the current study the investigators found that HDAC6 directly bound to survivin, an interaction that was enhanced by CBP. In quiescent breast cancer cells in culture and in malignant tissue sections from ER+ breast tumors, HDAC6 localized to a perinuclear region of the cell, undergoing transport to the nucleus following CBP activation where it then deacetylated survivin.

“It is not just how much HDAC6 is present – what is important is where it is,” said senior author Dr. Rachel Altura, associate professor of pediatrics at Brown University. “We need to look not only at the levels, but also where it is in the cell. You always have to worry about all the things you do not know that you are targeting. “If we can target HDAC6, we can maybe block survivin from coming out of the nucleus and maintain it in its good state.”

Related Links:

Brown University



Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Silver Member
Static Concentrator
BJP 10

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.