Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Prototype Ultrasound Bioreactor Assesses Engineers Tissue while Making It

By LabMedica International staff writers
Posted on 17 May 2012
American scientists have devised a prototype bioreactor--a device for culturing cells to create engineered tissues--that both stimulates and assesses tissue as it grows, simulating natural mechanisms while eliminating the need to stop periodically to snip off samples for analysis. More...
Tissue created in this manner might soon be used to replace, for example, injured or diseased cartilage in the hip and knee.

Conventional techniques for evaluating the development and properties of engineered tissue are time-consuming, destructive and need to be repeated many times. By using ultrasound to monitor tissue during processing without destroying it, the novel bioreactor could be a faster and less expensive alternative.
“Most bioreactors don’t do any type of nondestructive evaluation,” said the US National Institute of Standards and Technology (NIST; Boulder, CO, USA) postdoctoral researcher Jenni Popp, first author of a new article about the instrument, published online April 26, 2012, in the Journal of Medical Devices, and to be published the June 2012 print issue. “Having some sort of ongoing evaluation of the developing tissue is definitely novel.”

Natural cartilage is created by specialized cells that generate large amounts of structural proteins to weave a tough support material called extracellular matrix. Lacking blood vessels, cartilage has limited capability to heal from arthritis, injuries, or other defects. Damage can be treated with drugs or joint replacement but results can be imperfect. Engineered tissue is used in some medical treatments but is not yet a routine option to metal or plastic joint replacements. The NIST bioreactor provides researchers with a noninvasive way to monitor vital structural changes in developing tissue.

The NIST/CU bioreactor can fit inside a standard incubator, which controls temperature and acidity in the growth environment. The bioreactor applies force to stimulate five small cubes of cartilage cells embedded in water-based gels. The mechanical force mimics the natural stimuli needed for the cells to create matrix proteins and develop the structure and properties of real cartilage. Ultrasound techniques monitor tissue changes over time, while a digital video microscope takes images.

Early research indicates the bioreactor both stimulates and monitors development of cells, matrix content, and scaffolds to make three-dimensional (3D) engineered cartilage. The cell-laden gels were stimulated twice daily for an hour. Sulfated glycosaminoglycan (sGAG)--which combines with fibrous proteins to form the extracellular matrix--increased significantly after seven days. This structural change was detected by a significant decrease in ultrasound signals after seven days.
The research described in the article was performed at and led by NIST. The bioreactor is a collaborative project with several investigators from the University of Colorado Boulder (CU; USA) department of chemical and biological engineering.

NIST and CU researchers are continuing to develop ultrasonic measurement methods and plan to conduct longer experiments. The bioreactor is also being used by other academic researchers as a tool for confirming mathematical models of biokinetics, the study of growth and movement in developing tissue.

Related Links:

National Institute of Standards and Technology

University of Colorado Boulder



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.