We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Search for Driver Mutations Highlights the Genetic Diversity of Breast Cancer

By LabMedica International staff writers
Posted on 29 May 2012
Print article
A recent paper underscored the genetic diversity of breast tumors by adding nine new genes to the list of over 40 genes that have been linked to the development of this disease.

Investigators at the Wellcome Trust Sanger Institute (Hinxton, United Kingdom) in cooperation with the Oslo Breast Cancer Consortium (OSBREAC) examined the genomes of 100 tumors for somatic copy number changes and mutations in the coding exons of protein-coding genes. In particular, they were looking for “driver mutations,” which confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis.

They reported in the May 16, 2012, online edition of the journal Nature that the number of somatic mutations varied markedly between individual tumors. They found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about 10% of tumors characterized by numerous cytosine mutations in certain dinucleotides.

Driver mutations were identified in nine new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1, and TBX3. Overall, among the 100 tumors studied, driver mutations were found in at least 40 cancer genes and 73 different combinations of mutated cancer genes.

“In 28 cases we found only a single driver, but the maximum number of driver mutations in an individual cancer was six,” said contributing author Dr. Mike Stratton, director of the Wellcome Trust Sanger Institute. “We found that breast cancer can be caused by more than 70 different combinations of mutations. If we consider three breast cancers, each with four driver mutations: they might share none of those driver mutations – so each is a different genetic “animal.” They are different cancers driven by different genes. We need to classify them as carefully as we can. This study is a step towards that goal.”

“The picture is certainly more complicated than we would have wanted, but as with many other things knowledge is our strongest weapon. These comprehensive insights reveal the faulty wiring of the cellular circuit board that causes cells to behave as cancers. Understanding our enemy at this level of detail will allow us to take more rational approaches to therapy, to understand why some cancers respond to drugs and others do not, and direct us to new vulnerabilities to be exploited in new treatments,” said Dr. Stratton.

Related Links:
Wellcome Trust Sanger Institute

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automated Nucleic Acid Extractor
eLab
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: SCOPE IO has shown promise in predicting immunotherapy response in rare cancer patients (Photo courtesy of Lunit)

AI-Powered Whole-Slide Image Analyzer Predicts Immunotherapy Response for Rare Cancer Patients

Immunotherapy, especially immune checkpoint inhibitors like pembrolizumab, has become a groundbreaking treatment for cancer patients. However, not all patients respond the same way to this therapy, and... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.