We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Mechanical Stress May Induce Formation of Cancer Cells

By LabMedica International staff writers
Posted on 25 Jul 2012
Print article
Researchers have developed a novel technique for studying the forces that induce mistakes in chromosome distribution that have the potential to initiate growth of cancer cells.

In order to study mechanical effects that influence the outcome of cell division, investigators at the University of California, Los Angeles (USA) developed a novel microfluidic perfusion-culture system that allowed controllable variation in the level of cell confinement in a single axis allowing observation of cell growth and division at the single-cell level.

This novel culture platform allowed for both alterations in the geometry of the microenvironment, specifically the space in which the cell was allowed to grow and divide, as well as the elasticity of the substrate on which the cell was dividing. By using the microfluidic device to compress the cells, the investigators minimized cell death due to lack of nutrients, as media was constantly perfused through the compression chamber. The device also allowed for facile imaging of cells, as they were in a single focal plane.

The investigators used this tool to study growth and division of single HeLa (human cervical carcinoma) cells. They reported in the June 25, 2012, online edition of the journal PLoS ONE that mechanically confined cell cycles resulted in stressed cell divisions that manifested as: (i) delayed mitosis, (ii) multidaughter mitosis events (from three up to five daughter cells), (iii) unevenly sized daughter cells, and (iv) induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased 50-fold from unconfined environments, representing about one-half of all successful mitotic events. Most daughter cells resulting from multipolar divisions were viable after cytokinesis and were in some cases observed to re-fuse with neighboring cells post-cytokinesis.

“We hope that this platform will allow us to better understand how the 3-D mechanical environment may play a role in the progression of a benign tumor into a malignant tumor that kills," said senior author Dr. Dino Di Carlo, associate professor of bioengineering at the University of California, Los Angeles. “Even though cancer can arise from a set of precise mutations, the majority of malignant tumors possess aneuploid cells, and the reason for this is still an open question. Our new microfluidic platform offers a more reliable way for researchers to study how the unique tumor environment may contribute to aneuploidy.”

Related Links:
University of California, Los Angeles



Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.