Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Reducing Stress Retards Breast Cancer Metastasis to the Bone

By LabMedica International staff writers
Posted on 31 Jul 2012
Molecular messengers secreted by the immune system in times of stress activate a metabolic pathway that encourages breast cancer cells to migrate from the site of the primary tumor into bone.

Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. More...
Having previously shown that the sympathetic nervous system stimulated bone remodeling, and that it used some of the same signaling molecules that have been implicated in breast cancer metastasis to bone, investigators at Vanderbilt University (Nashville, TN, USA) examined the role of stress (stimulation of the sympathetic nervous system) in a mouse breast cancer model.

They reported in the July 17, 2012, online edition of the journal PLoS Biology that sympathetic nervous system activation increased bone levels of the signaling molecule RANKL, which was known to promote the formation of osteoclasts, bone cells that break down bone tissue. RANKL (receptor activator of nuclear factor kappa-B ligand) is a member of the tumor necrosis factor (TNF) cytokine family. It is a ligand for osteoprotegerin and functions as a key factor for osteoclast differentiation and activation. RANKL also has a function in the immune system, where it is expressed by T helper cells and is thought to be involved in dendritic cell maturation. T cell activation was reported to induce expression of this gene and lead to an increase in the number of osteoclasts and bone loss. Overproduction of RANKL has been implicated in a variety of degenerative bone diseases, such as rheumatoid arthritis and psoriatic arthritis.

Blocking sympathetic activation (i.e., lowering the level of stress) with a beta-blocker such as propranolol or inhibiting RANKL signaling in cancer cells with denosumab, reversed the stimulatory effect of sympathetic activation on bone metastasis in the mouse model. Denosumab, which was designed to target RANKL, is a fully human monoclonal antibody approved by the [US] Food and Drug Administration (FDA) for the treatment of osteoporosis, treatment-induced bone loss, bone metastases, rheumatoid arthritis, multiple myeloma, and giant cell tumor of bone.

"We came to the hypothesis that sympathetic activation might remodel the bone environment and make it more favorable for cancer cells to metastasize there," said senior author Dr. Florent Elefteriou, associate professor of medicine, pharmacology, and cancer biology at Vanderbilt University. "Preventing metastasis is really the goal we want to achieve. If something as simple as a beta-blocker could prevent cancer metastasis to bone, this would impact the treatment of millions of patients worldwide."

Related Links:

Vanderbilt University




Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.