We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Resistive Pulse Sensing Allows Measurement of Individual Biological Particles

By LabMedica International staff writers
Posted on 02 Aug 2012
An international team of biotech researchers has used an ultrasensitive nanoparticle analysis system to detect and measure the agglutination of biological molecules at the level of the individual particle. More...


The team comprised of investigators from Loughborough University (Leicestershire, United Kingdom) and University College Dublin (Ireland) worked with an Izon Science (Christchurch, New Zealand) qNano instrument.

The qNano uses resistive pulse sensing to monitor individual and aggregated rod-shaped nanoparticles as they move through tunable pores in elastomeric membranes. A discrete blockade event signal is recorded by the system each time a particle traverses the nanopore. The magnitude of a measured blockade signal is a key indicator of the volume (or equivalent diameter) of the particle that has passed through the pore.

The qNano instrument is described by its manufacturer as a rapid, accurate, and convenient solution for evaluation of particle size and size distribution of nanoparticle samples in a fluid. Particle-by-particle detection ensures an accurate size distribution output without the averaging effects inherent in other size analysis technologies.

In a paper published in the May 9, 2012, online edition of the journal Small the investigators described the use of the qNano instrument to investigate the agglutination of biological molecules. By controlling the surface chemistry and location of the capture ligand, molecular rods were made to form either long “end-on-end” or wide “side-on” aggregates upon the addition of an analyte. They demonstrated the binding of a biotinylated target to an avidin capture probe, followed by the detection of platelet-derived growth factor (PDGF-BB) using an aptamer capture probe, with limits of detection down to femtomolar levels. This observation will facilitate multiplexed detection in agglutination assays, as particles with a particular aspect ratio can be distinguished by only two measurements.

First author Dr. Mark Platt, lecturer in analytical chemistry at Loughborough University, said, "The strength of using the qNano is its simplicity and the ability to interrogate individual particles through a nanopore. This allowed us to establish a very sensitive measurement of concentration because we could detect the interactions occurring down to individual particle level. By comparing particles of similar dimensions we demonstrated that the resistive pulse signal is fundamentally different for rod and sphere-shaped particles, and for rod shaped particles of different lengths. We could exploit these differences in a new agglutination assay to achieve these low detection levels."

"This is a real milestone for Izon's technology as being able to measure biomolecules down to these extremely low levels opens up new bio-analysis options for researchers. 10 femtomolar was achieved, which is the equivalent dilution to one gram in 3.3 billion liters, or one gram in 1,300 Olympic sized swimming pools," said Hans van der Voorn, executive chairman of Izon Science. "We are now developing standardized diagnostics kits for researchers which will allow them to optimize protocols for their particular targets of interest."

Related Links:
Loughborough University
University College Dublin
Izon Science



New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.