We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Key Role Discovered for Enzyme in Preserving Essence of Stem Cells

By LabMedica International staff writers
Posted on 29 Aug 2012
Print article
Image: Mouse stem cells with both normally functioning copies of the Mof gene (left) have intact "stem-ness", that is lost in cells lacking one or both functional copies (middle and right) (Photo courtesy of Prof. Yali Dou’s laboratory, University of Michigan).
Image: Mouse stem cells with both normally functioning copies of the Mof gene (left) have intact "stem-ness", that is lost in cells lacking one or both functional copies (middle and right) (Photo courtesy of Prof. Yali Dou’s laboratory, University of Michigan).
A highly conserved yet unique acetyltransferase has now been shown to be essential in maintaining the self-renewal and pluripotent capacities of embryonic stem cells.

A team of scientists, primarily from the University of Michigan Medical School (Ann Arbor, MI, USA), have discovered that Mof, the only histone acetyltransferase known to be important in the functioning of non-differentiated embryonic stem cells (ESCs), is involved in regulating the core transcription mechanism in those cells by epigenetically marking chromatin to keep parts of the genome readily accessible. In ESCs, many areas of DNA are kept open for access, probably because they also need to produce many proteins that prevent differentiation. Once an ESC starts to differentiate, parts of the DNA close up and are no longer as accessible. Many scientific teams have studied this “selective silencing” and the factors that cause ESCs to start specializing by reading only certain genes. But few have looked at the crucial but little understood factors that facilitate broad-range DNA transcription to preserve “stem-ness”.

“If you think about stem cell biology, the self-renewal is one aspect that makes stem cells unique and powerful, and the differentiation is another,” says lead scientist Yali Dou, PhD and associate professor of pathology and biological chemistry. “People have looked a lot at differentiation to make cells useful for therapy in the future – but the stem cell itself is actually pretty fascinating.” Prof. Dou and her team have also reported on the protein WDR5 that places chromatin tags important during transcription, but Mof appears to control the process that actually allows cells to determine which genes to transcribe. “Mof marks the areas that need to stay open and maintains the potential to become anything,” Prof. Dou explains. The findings of the current extensive study, published on August 3, 2012, in the journal Cell Stem Cell, also include that ESC Mof-deletion mutants lose characteristic morphology, alkaline phosphatase (AP) staining, and differentiation potential. Furthermore, these mutants have aberrant expression of the core transcription factors Nanog, Oct4, and Sox2.

The new findings may also have particular importance for work on induced pluripotent stem cells (IPSCs), stem cells made from “adult” tissue. IPSC research holds promise for disease treatment as it could allow patients to be treated with stem cells made from their own tissue. But the current way of making IPSCs from tissue involves a process that uses a cancer-causing gene, a step that might give doctors and patients pause. Prof. Dou says that further work on Mof might make it possible to stop using this potentially harmful approach.

Related Links:

University of Michigan Health System



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Flu Test
ID NOW Influenza A & B 2
New
Progesterone Serum Assay
Progesterone ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.