We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Infrared Light Causes Organic Nanoparticles to Heat Up and Cook Cancer Cells

By LabMedica International staff writers
Posted on 06 Dec 2012
Print article
Novel organic nanoparticles that generate heat when exposed to infrared light effectively killed colorectal cancer cells in a cell-culture model system.

Investigators at Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) developed conjugated polymer nanoparticles (PNs) consisting of 2-ethylhexyl cyclopentadithiophene copolymerized with 2,1,3-benzothiadiazole (for nano-PCPDTBT) or 2,1,3-benzoselenadiazole (for nano-PCPDTBSe). The PNs were stable in aqueous media and showed no significant toxicity up to one mg/mL. Upon exposure to infrared light at 808 nm, the PNs generated temperatures above 50 degrees Celsius.

Experiments were carried out to test the effect of the PNs on cultures of RKO and HCT116 colorectal cancer cells.

Results published in the October 5, 2012, online edition of the journal Macromolecular Bioscience revealed that exposure to infrared light for five minutes killed more than 80% of the cells at nano-PCPDTBSe concentrations above 100 micrograms/mL, while at concentrations above 62 micrograms/mL for nano-PCPDTBT, more than 90% of cells were killed.

“The results of this study demonstrate how new medical advancements are being developed from materials science research,” said senior author Dr. Nicole H. Levi-Polyachenko, assistant professor of plastic and reconstructive surgery at Wake Forest Baptist Medical Center. “There is a lot more research that needs to be done so that these new nanoparticles can be used safely in patients, but the field of electrically-conductive polymers is broad and offers many opportunities to develop safe, organic nanoparticles for generating heat locally in a tissue. We are very enthusiastic about future medical applications using these new nanoparticles, including an alternative approach for treating colorectal cancer.”

Related Links:
Wake Forest Baptist Medical Center

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.